Harnessing data science to advance radiation oncology.

Ivan R Vogelius, Jens Petersen, Søren M Bentzen
Author Information
  1. Ivan R Vogelius: Deptartment of Oncology, Rigshospitalet, Copenhagen, Denmark. ORCID
  2. Jens Petersen: Deptartment of Computer Science, University of Copenhagen, Denmark.
  3. Søren M Bentzen: Department of Epidemiology & Public Health, Greenebaum Cancer Center, University of Maryland Baltimore, MD, USA.

Abstract

Radiation oncology, a major treatment modality in the care of patients with malignant disease, is a technology- and computer-intensive medical specialty. As such, it should lend itself ideally to data science methods, where computer science, statistics, and clinical knowledge are combined to advance state-of-the-art care. Nevertheless, data science methods in radiation oncology research are still in their infancy and successful applications leading to improved patient care remain scarce. Here, we discuss data interoperability issues within and across organizational boundaries that hamper the introduction of big data and data science techniques in radiation oncology. At the semantic level, creating common underlying models and codification of the data, including the use of data elements with standardized definitions, an ontology, remains a work in progress. Methodological issues in data science and in the use of large population-based health data registries are identified. We show that data science methods and big data cannot replace randomized clinical trials in comparative effectiveness research by reviewing a series of instances where the outcomes of big data analyses and randomized trials are at odds. We also discuss the modern wave of machine learning and artificial intelligence as represented by deep learning and convolutional neural networks. Finally, we identify promising research avenues and remain optimistic that the data sources in radiation oncology can be linked to yield important insights in the near future. We argue that data science will be a valuable complement to, but not a replacement of, the traditional hypothesis-driven translational research chain and the randomized clinical trials that form the backbone of evidence-based medicine.

Keywords

References

  1. Oral Oncol. 2018 Nov;86:132-140 [PMID: 30409293]
  2. Radiother Oncol. 2019 Sep 20;: [PMID: 31547943]
  3. Acta Oncol. 2020 Jun;59(6):628-635 [PMID: 32202189]
  4. Med Dosim. 2020 Spring;45(1):73-76 [PMID: 31371240]
  5. Lancet. 2019 Aug 3;394(10196):385-395 [PMID: 31227373]
  6. J Thorac Oncol. 2018 Apr;13(4):559-567 [PMID: 29355615]
  7. Nature. 2012 Mar 28;483(7391):531-3 [PMID: 22460880]
  8. Blood. 2017 Apr 20;129(16):2257-2265 [PMID: 28143884]
  9. Acta Oncol. 2012 Nov;51(8):975-83 [PMID: 22950387]
  10. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  11. Radiother Oncol. 2018 Jul;128(1):154-160 [PMID: 29248170]
  12. J Clin Oncol. 2016 Feb 1;34(4):314-20 [PMID: 26598752]
  13. BMC Cancer. 2019 Aug 5;19(1):765 [PMID: 31382921]
  14. Radiother Oncol. 2018 Dec;129(3):421-426 [PMID: 29907338]
  15. Lancet Oncol. 2005 Feb;6(2):112-7 [PMID: 15683820]
  16. BMJ. 2020 Mar 20;368:l6927 [PMID: 32198138]
  17. Radiother Oncol. 2015 Jan;114(1):3-10 [PMID: 25630428]
  18. Pract Radiat Oncol. 2020 Jan - Feb;10(1):e16-e26 [PMID: 31369887]
  19. Radiother Oncol. 2014 Jun;111(3):360-5 [PMID: 24993331]
  20. Radiother Oncol. 1998 Jan;46(1):5-18 [PMID: 9488121]
  21. Med Phys. 2019 Jan;46(1):e1-e36 [PMID: 30367497]
  22. JCO Clin Cancer Inform. 2018 Dec;2:1-7 [PMID: 30652539]
  23. Int J Radiat Oncol Biol Phys. 2010 Apr;76(5):1295-6 [PMID: 20338472]
  24. Int J Radiat Oncol Biol Phys. 2017 Oct 1;99(2):344-352 [PMID: 28871984]
  25. PLoS One. 2019 Sep 19;14(9):e0222509 [PMID: 31536526]
  26. Med Phys. 2019 Feb;46(2):576-589 [PMID: 30480818]
  27. Int J Radiat Oncol Biol Phys. 2018 Mar 15;100(4):858-865 [PMID: 29485063]
  28. Lancet Oncol. 2012 Jan;13(1):65-77 [PMID: 22169268]
  29. Radiother Oncol. 2016 Dec;121(3):431-439 [PMID: 27443449]
  30. BMC Med Res Methodol. 2014 Mar 19;14:40 [PMID: 24645774]
  31. J Natl Cancer Inst. 2013 Feb 20;105(4):256-65 [PMID: 23291374]
  32. Radiother Oncol. 2019 Sep;138:45-51 [PMID: 31146070]
  33. Brachytherapy. 2019 Jan - Feb;18(1):108-114.e1 [PMID: 30385115]
  34. Stat Med. 2000 Feb 29;19(4):453-73 [PMID: 10694730]
  35. Ann Intern Med. 2015 Jan 6;162(1):55-63 [PMID: 25560714]
  36. Int J Radiat Oncol Biol Phys. 2000 Jun 1;47(3):551-60 [PMID: 10837935]
  37. Int J Radiat Oncol Biol Phys. 2019 Mar 15;103(4):809-817 [PMID: 30562547]
  38. Radiother Oncol. 2020 Feb;143:73-80 [PMID: 31472998]
  39. Clin Oncol (R Coll Radiol). 2014 Oct;26(10):599-601 [PMID: 25153934]
  40. Radiother Oncol. 2019 Jan;130:2-9 [PMID: 30416044]
  41. Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):812-823 [PMID: 31344435]
  42. JAMA. 2017 Jul 11;318(2):197-198 [PMID: 28586821]
  43. Radiother Oncol. 2012 Apr;103(1):109-12 [PMID: 22325993]
  44. Br J Radiol. 2020 Mar;93(1107):20190224 [PMID: 31317768]
  45. J Clin Oncol. 2016 Sep 20;34(27):3355-7 [PMID: 27458289]
  46. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S1-2 [PMID: 20171501]
  47. Radiother Oncol. 2017 Mar;122(3):416-422 [PMID: 28233564]
  48. Comput Biol Med. 2018 Jul 1;98:126-146 [PMID: 29787940]
  49. Semin Radiat Oncol. 2003 Jul;13(3):176-81 [PMID: 12903007]
  50. JAMA. 2019 Nov 12;322(18):1806-1816 [PMID: 31714992]
  51. J Clin Oncol. 2014 Sep 20;32(27):2940-50 [PMID: 25154822]
  52. Int J Radiat Oncol Biol Phys. 2003 Feb 1;55(2):312-21 [PMID: 12527043]
  53. Acta Oncol. 2014 May;53(5):605-12 [PMID: 23957623]
  54. J Natl Cancer Inst. 2020 Feb 1;112(2):179-190 [PMID: 31095341]
  55. Int J Radiat Oncol Biol Phys. 2001 Feb 1;49(2):345-51 [PMID: 11173127]
  56. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S70-6 [PMID: 20171521]
  57. Pract Radiat Oncol. 2019 Nov;9(6):395-401 [PMID: 31445187]
  58. Int J Radiat Oncol Biol Phys. 2012 Jul 15;83(4):1232-7 [PMID: 22270170]
  59. Radiother Oncol. 2009 Jul;92(1):4-14 [PMID: 19446902]
  60. Lancet Haematol. 2015 Nov;2(11):e492-502 [PMID: 26686259]
  61. N Engl J Med. 2013 Mar 14;368(11):987-98 [PMID: 23484825]
  62. Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1065-74 [PMID: 21605943]
  63. Nat Rev Cancer. 2006 Sep;6(9):702-13 [PMID: 16929324]
  64. Int J Radiat Oncol Biol Phys. 2019 Nov 15;105(4):698-712 [PMID: 31381960]

Grants

  1. /Maryland Department of Health and Mental Hygiene
  2. /Varian Medical Systems
  3. /Kirsten and Freddy Johansens award
  4. P30 CA 134274-04/NCI NIH HHS
  5. R231-A13976/Kraeftens Bekaempelse
  6. P30 CA 134274-04/NCI NIH HHS

MeSH Term

Artificial Intelligence
Data Science
Humans
Models, Theoretical
Radiation Oncology
Radiotherapy
Randomized Controlled Trials as Topic

Word Cloud

Created with Highcharts 10.0.0datascienceoncologyradiationresearchcaremethodsclinicalbigrandomizedtrialsadvanceremaindiscussissuesuselearningartificialintelligenceRadiationmajortreatmentmodalitypatientsmalignantdiseasetechnology-computer-intensivemedicalspecialtylendideallycomputerstatisticsknowledgecombinedstate-of-the-artNeverthelessstillinfancysuccessfulapplicationsleadingimprovedpatientscarceinteroperabilitywithinacrossorganizationalboundarieshamperintroductiontechniquessemanticlevelcreatingcommonunderlyingmodelscodificationincludingelementsstandardizeddefinitionsontologyremainsworkprogressMethodologicallargepopulation-basedhealthregistriesidentifiedshowreplacecomparativeeffectivenessreviewingseriesinstancesoutcomesanalysesoddsalsomodernwavemachinerepresenteddeepconvolutionalneuralnetworksFinallyidentifypromisingavenuesoptimisticsourcescanlinkedyieldimportantinsightsnearfuturearguewillvaluablecomplementreplacementtraditionalhypothesis-driventranslationalchainformbackboneevidence-basedmedicineHarnessingradiotherapy

Similar Articles

Cited By