Prevalence and Therapies of Antibiotic-Resistance in .

Yunlei Guo, Guanghui Song, Meiling Sun, Juan Wang, Yi Wang
Author Information
  1. Yunlei Guo: Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, China.
  2. Guanghui Song: Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China.
  3. Meiling Sun: Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China.
  4. Juan Wang: Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China.
  5. Yi Wang: Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China.

Abstract

Infectious diseases are the second most important cause of human death worldwide; is a very common human pathogenic microorganism that can trigger a variety of infectious diseases, such as skin and soft tissue infections, endocarditis, osteomyelitis, bacteremia, and lethal pneumonia. Moreover, according to the sensitivity to antibiotic drugs, can be divided into methicillin-sensitive (MSSA) and methicillin-resistant (MRSA). In recent decades, due to the evolution of bacteria and the abuse of antibiotics, the drug resistance of has gradually increased, the infection rate of MRSA has increased worldwide, and the clinical anti-infective treatment for MRSA has become more difficult. Accumulating evidence has demonstrated that the resistance mechanisms of are very complex, especially for MRSA, which is resistant to many kinds of antibiotics. Therefore, understanding the drug resistance of MRSA in a timely manner and elucidating its drug resistance mechanism at the molecular level are of great significance for the treatment of infection. A large number of researchers believe that analyzing the molecular characteristics of can help provide a basis for designing effective prevention and treatment measures against hospital infections caused by and further monitor the evolution of . This paper reviews the research status of MSSA and MRSA, the detailed mechanisms of the intrinsic antibiotic resistance and the acquired antibiotic resistance, the advanced research on anti-MRSA antibiotics and novel therapeutic strategies for MRSA treatment.

Keywords

References

  1. Expert Opin Drug Metab Toxicol. 2017 Apr;13(4):463-472 [PMID: 28264613]
  2. J Biol Chem. 2004 Jan 30;279(5):3398-407 [PMID: 14613936]
  3. FEMS Microbiol Rev. 2017 May 1;41(3):430-449 [PMID: 28419231]
  4. Yao Xue Xue Bao. 2011 Jun;46(6):613-21 [PMID: 21882519]
  5. Expert Opin Drug Metab Toxicol. 2016 Jun;12(6):595-600 [PMID: 27020789]
  6. Science. 2017 Feb 24;355(6327):831-833 [PMID: 28232575]
  7. Semin Immunol. 2017 Dec;34:52-60 [PMID: 29066063]
  8. Clin Infect Dis. 2017 Nov 13;65(11):1921-1923 [PMID: 29020322]
  9. J Immunol. 2018 May 1;200(9):3037-3044 [PMID: 29685950]
  10. Clin Microbiol Rev. 2010 Jan;23(1):99-139 [PMID: 20065327]
  11. Front Microbiol. 2020 Feb 04;10:3139 [PMID: 32117086]
  12. Curr Top Med Chem. 2017;17(10):1199-1211 [PMID: 27770768]
  13. Antimicrob Resist Infect Control. 2017 Dec 1;6:122 [PMID: 29214017]
  14. Eur J Clin Microbiol Infect Dis. 2016 Dec;35(12):1923-1931 [PMID: 27604831]
  15. Mar Drugs. 2019 Jul 26;17(8): [PMID: 31357490]
  16. Microb Drug Resist. 2020 Feb;26(2):110-117 [PMID: 31478786]
  17. J Antimicrob Chemother. 2018 Dec 1;73(12):3254-3258 [PMID: 30272180]
  18. Expert Opin Pharmacother. 2010 Dec;11(18):3009-25 [PMID: 20955116]
  19. Cold Spring Harb Perspect Med. 2016 Dec 1;6(12): [PMID: 27663982]
  20. Curr Pharm Des. 2017;23(14):2084-2095 [PMID: 27890003]
  21. J Antimicrob Chemother. 2003 May;51 Suppl 2:ii9-16 [PMID: 12730138]
  22. J Am Chem Soc. 2017 Aug 9;139(31):10597-10600 [PMID: 28727445]
  23. Clin Infect Dis. 2007 Sep 15;45 Suppl 3:S184-90 [PMID: 17712745]
  24. J Glob Antimicrob Resist. 2018 Dec;15:178-187 [PMID: 29981455]
  25. J Antibiot (Tokyo). 2017 Jul 26;: [PMID: 28743973]
  26. Zhonghua Jie He He Hu Xi Za Zhi. 2007 Jan;30(1):40-3 [PMID: 17326972]
  27. World J Gastrointest Pharmacol Ther. 2017 Aug 6;8(3):162-173 [PMID: 28828194]
  28. Int J Antimicrob Agents. 2015 Sep;46(3):278-89 [PMID: 26143590]
  29. Bioorg Med Chem. 2016 Dec 15;24(24):6253-6268 [PMID: 27288182]
  30. Eur J Pharm Sci. 2019 Jan 15;127:208-216 [PMID: 30412770]
  31. J Antimicrob Chemother. 2017 Dec 1;72(12):3252-3257 [PMID: 28961986]
  32. Infect Dis (Lond). 2017 Jul;49(7):493-500 [PMID: 28276799]
  33. J Med Microbiol. 2005 Jun;54(Pt 6):557-565 [PMID: 15888465]
  34. Pharmacotherapy. 2000 Dec;20(12):1469-85 [PMID: 11130220]
  35. Crit Care. 2016 Apr 20;20(Suppl 2):94 [PMID: 27885969]
  36. AAPS J. 2017 Jan;19(1):26-42 [PMID: 27834047]
  37. J Microbiol. 2016 Jan;54(1):1-8 [PMID: 26727895]
  38. Ann Clin Microbiol Antimicrob. 2017 Apr 5;16(1):24 [PMID: 28381268]
  39. J Microbiol Biotechnol. 2016 Feb;26(2):263-9 [PMID: 26562692]
  40. Surgeon. 2012 Dec;10(6):357-60 [PMID: 23079115]
  41. Curr Opin Microbiol. 2012 Oct;15(5):588-95 [PMID: 23044073]
  42. Clin Microbiol Infect. 2016 Oct;22(10):890.e1-890.e7 [PMID: 27475738]
  43. Biomed Pharmacother. 2019 Jan;109:1809-1818 [PMID: 30551435]
  44. Nat Rev Microbiol. 2017 Aug;15(8):453-464 [PMID: 28529326]
  45. Antibiotics (Basel). 2019 Mar 15;8(1): [PMID: 30875968]
  46. Curr Med Chem. 2018;25(1):85-96 [PMID: 28730969]
  47. Front Immunol. 2019 Sep 23;10:2238 [PMID: 31608060]
  48. Appl Environ Microbiol. 2018 May 1;84(10): [PMID: 29500262]
  49. Rev Esp Quimioter. 2017 Dec;30(6):391-396 [PMID: 29082727]
  50. Br Poult Sci. 2016 Dec;57(6):729-733 [PMID: 27825276]
  51. N Engl J Med. 1998 Aug 20;339(8):520-32 [PMID: 9709046]
  52. J Med Microbiol. 2019 Jun;68(6):957-960 [PMID: 31050633]
  53. Trends Biochem Sci. 2016 Mar;41(3):274-286 [PMID: 26725301]
  54. Crit Care. 2017 Aug 14;21(1):211 [PMID: 28807042]
  55. Clin Ther. 2015 Dec 1;37(12):2866-77 [PMID: 26519233]
  56. Indian J Med Res. 2019 Aug;150(2):194-198 [PMID: 31670275]
  57. J Antimicrob Chemother. 2018 Jan 1;73(1):1-11 [PMID: 29059358]
  58. Nat Rev Microbiol. 2009 Sep;7(9):629-41 [PMID: 19680247]
  59. Trends Microbiol. 2017 Nov;25(11):893-905 [PMID: 28641931]
  60. mBio. 2019 Oct 29;10(5): [PMID: 31662453]
  61. Microb Drug Resist. 2016 Apr;22(3):185-92 [PMID: 26565599]
  62. Crit Rev Microbiol. 2011 May;37(2):121-40 [PMID: 21271798]
  63. Curr Med Chem. 2017;24(38):4303-4314 [PMID: 28814242]
  64. Biomed Pharmacother. 2014 Oct;68(8):1065-9 [PMID: 25458794]
  65. J Infect Chemother. 2018 Feb;24(2):153-155 [PMID: 29132926]
  66. Nihon Rinsho. 1994 Feb;52(2):327-31 [PMID: 8126881]
  67. Semin Respir Crit Care Med. 2015 Feb;36(1):17-30 [PMID: 25643268]
  68. ACS Nano. 2010 Nov 23;4(11):6303-17 [PMID: 20945925]
  69. Anasthesiol Intensivmed Notfallmed Schmerzther. 2002 Apr;37(4):199-204 [PMID: 11967745]
  70. Clin Infect Dis. 2012 Jul;55(2):232-41 [PMID: 22523264]
  71. J Microbiol Methods. 2019 Oct;165:105691 [PMID: 31437554]
  72. Indian J Microbiol. 2019 Mar;59(1):3-12 [PMID: 30728625]
  73. AIMS Microbiol. 2018 Jan 4;4(1):1-18 [PMID: 31294201]
  74. Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):91-101 [PMID: 24328927]
  75. J Orthop Surg (Hong Kong). 2019 May-Aug;27(2):2309499019850324 [PMID: 31138005]
  76. Intern Med J. 2005 Dec;35 Suppl 2:S3-16 [PMID: 16271060]
  77. J Clin Invest. 2014 Jul;124(7):2836-40 [PMID: 24983424]
  78. Int J Antimicrob Agents. 2017 May;49(5):603-608 [PMID: 28366660]
  79. Clin Med Res. 2019 Dec;17(3-4):72-81 [PMID: 31582419]
  80. BMC Microbiol. 2014 Apr 04;14:84 [PMID: 24708478]
  81. Int J Med Microbiol. 2013 Aug;303(6-7):318-23 [PMID: 23499479]
  82. Curr Microbiol. 2017 Feb;74(2):277-283 [PMID: 27896482]
  83. Int J Med Microbiol. 2013 Aug;303(6-7):324-30 [PMID: 23517691]
  84. Trends Microbiol. 2011 Apr;19(4):184-90 [PMID: 21227700]
  85. Clin Microbiol Rev. 2018 Sep 12;31(4): [PMID: 30209034]
  86. JAMA. 2007 Oct 17;298(15):1763-71 [PMID: 17940231]
  87. Microbiol Spectr. 2019 Mar;7(2): [PMID: 30900543]
  88. Medchemcomm. 2019 Mar 14;10(8):1231-1241 [PMID: 31534648]
  89. Phytother Res. 2013 Oct;27(10):1517-23 [PMID: 23192753]
  90. Drug Resist Updat. 2016 Nov;29:76-89 [PMID: 27912845]
  91. J Med Microbiol. 2014 May;63(Pt 5):710-714 [PMID: 24493159]
  92. Drug Des Devel Ther. 2018 Jun 18;12:1759-1767 [PMID: 29950810]
  93. J Am Chem Soc. 2018 Nov 7;140(44):14915-14925 [PMID: 30303367]
  94. Biofouling. 2017 Feb;33(2):128-142 [PMID: 28121162]
  95. Front Genet. 2019 Jan 09;9:710 [PMID: 30687388]
  96. Curr Top Microbiol Immunol. 2008;322:107-31 [PMID: 18453274]
  97. J Antimicrob Chemother. 2017 Dec 1;72(12):3382-3389 [PMID: 28962026]
  98. Microb Drug Resist. 2019 Jun;25(5):668-676 [PMID: 31099708]
  99. J Clin Microbiol. 2004 Mar;42(3):1263-4 [PMID: 15004089]

MeSH Term

Anti-Bacterial Agents
Drug Resistance, Microbial
Humans
Methicillin-Resistant Staphylococcus aureus
Prevalence
Staphylococcal Infections
Staphylococcus aureus

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0resistanceMRSAantibiotictreatmentcanantibioticsdrugmechanismsmoleculardiseaseshumanworldwideinfectionsMSSAevolutionincreasedinfectionresearchacquiredInfectioussecondimportantcausedeathcommonpathogenicmicroorganismtriggervarietyinfectiousskinsofttissueendocarditisosteomyelitisbacteremialethalpneumoniaMoreoveraccordingsensitivitydrugsdividedmethicillin-sensitivemethicillin-resistantrecentdecadesduebacteriaabusegraduallyrateclinicalanti-infectivebecomedifficultAccumulatingevidencedemonstratedcomplexespeciallyresistantmanykindsThereforeunderstandingtimelymannerelucidatingmechanismlevelgreatsignificancelargenumberresearchersbelieveanalyzingcharacteristicshelpprovidebasisdesigningeffectivepreventionmeasureshospitalcausedmonitorpaperreviewsstatusdetailedintrinsicadvancedanti-MRSAnoveltherapeuticstrategiesPrevalenceTherapiesAntibiotic-ResistanceStaphylococcusaureustherapycellmembrane

Similar Articles

Cited By