Impacts of trace metals on African common toad, (Reuss, 1833) and depuration effects of the toad's enteric parasite, (Taylor, 1924) sampled within Lagos metropolis, Nigeria.

Bamidele Akinsanya, Patrick Omoregie Isibor, Benedict Onadeko, Abe-Alimi Tinuade
Author Information
  1. Bamidele Akinsanya: Department of Zoology, University of Lagos, Nigeria.
  2. Patrick Omoregie Isibor: Department of Biological Sciences, College of Science and Technology, Covenant University, Nigeria.
  3. Benedict Onadeko: Department of Zoology, University of Lagos, Nigeria.
  4. Abe-Alimi Tinuade: Department of Zoology, University of Lagos, Nigeria.

Abstract

The study aimed at assessing the depuration potentials of endoparasite, on trace metals in its toad host, at sites of significant anthropogenic perturbations within the Lagos metropolis, in Nigeria. A total of 120 toads of both sexes, alongside 45 soil samples were collected from each of three (3) stations labeled Dumpsite, Lagoon front and Highrise, using hand nets and by hand-picking between February and October, 2018. The intestinal tissues sections of the toads were examined using a binocular dissecting microscope (American Optical Corporation, Model 570) and hematoxylin and eosin (H&E) stain. Oxidative stress in toad intestine was assessed by estimating the levels of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Trace metals in the water, soil, toad liver, intestine and parasite, were tested using Atomic Absorption Spectrophotometry (Philips model PU 9100). Lead (Pb), copper (Cu), nickel (Ni), cadmium (Cd), and chromium (Cr) were detected in the toads, with the infected toads having lower concentrations of most trace metals than the uninfected toads, irrespective of the locations and sex. Strong negative correlations between parasitological indices and concentrations of trace metals in the toads suggest that the parasites might have taken up significant amounts of trace metals from the host. The study demonstrated the potentials of parasite, to depurate trace metal burden in When the dominant factor impacting the toad is the parasitic infection, parasite intensity determines the trade-off between parasitological harm and depuration benefit to the host. Hence, under controlled conditions, parasites may serve as bioremediation agent in the event of pollution. Depuration potential of in the study was supported by the mild tissue alterations observed in the intestine of infected toads, compared to the uninfected counterparts, which exhibited severe glandular hyperplasia, increased connective tissue, and severely stunted villi. Consistently lower activities of biochemical biomarkers which characterize the uninfected toads compared to the infected, irrespective of the sex and stations, further corroborate drawn inferences.

Keywords

References

  1. Oecologia. 2002 Dec;133(4):458-465 [PMID: 28466176]
  2. Arch Biochem Biophys. 1959 May;82(1):70-7 [PMID: 13650640]
  3. J Parasitol Res. 2012;2012:748206 [PMID: 22792442]
  4. Arch Environ Contam Toxicol. 2008 Feb;54(2):195-202 [PMID: 17763881]
  5. Environ Toxicol Chem. 2007 Oct;26(10):2166-70 [PMID: 17867892]
  6. Biomed Res Int. 2015;2015:351289 [PMID: 25722976]
  7. Postgrad Med J. 2006 Sep;82(971):559-67 [PMID: 16954450]
  8. Aquat Toxicol. 2004 Mar 30;67(1):33-43 [PMID: 15019249]
  9. Environ Sci Technol. 2015 Apr 7;49(7):4657-64 [PMID: 25785366]
  10. Br J Cancer. 2013 Oct 1;109(7):1839-47 [PMID: 24008661]
  11. Environ Health Perspect. 1995 May;103 Suppl 4:13-7 [PMID: 7556018]
  12. Environ Monit Assess. 2016 Oct;188(10):571 [PMID: 27640166]
  13. Trop Parasitol. 2015 Jan-Jun;5(1):29-35 [PMID: 25709950]
  14. J Parasitol. 2010 Aug;96(4):823-6 [PMID: 20476801]
  15. Environ Toxicol Chem. 2008 Dec;27(12):2496-500 [PMID: 18613741]
  16. Chemosphere. 2003 Apr;51(3):197-204 [PMID: 12591252]
  17. J Protozool. 1964 May;11:157-66 [PMID: 14179741]
  18. Environ Toxicol Chem. 2019 Jan;38(1):80-89 [PMID: 30273992]
  19. Science. 2004 Dec 3;306(5702):1783-6 [PMID: 15486254]
  20. Chemosphere. 2005 Aug;60(6):731-9 [PMID: 15964056]
  21. Environ Monit Assess. 2011 Nov;182(1-4):205-13 [PMID: 21213039]
  22. Akush Ginekol (Sofiia). 2010;49(2):47-9 [PMID: 20734678]
  23. Environ Health Perspect. 2006 Apr;114 Suppl 1:40-50 [PMID: 16818245]
  24. Environ Monit Assess. 2002 May;76(1):55-67 [PMID: 12125750]
  25. Rev Biol Trop. 2008 Dec;56(4):2021-6 [PMID: 19419098]
  26. J Fish Dis. 2007 Oct;30(10):581-5 [PMID: 17850574]
  27. Environ Sci Pollut Res Int. 2017 Aug;24(23):18742-18769 [PMID: 28660518]
  28. Environ Health Perspect. 1994 Dec;102 Suppl 10:107-10 [PMID: 7705283]
  29. Parasitol Res. 2013 Mar;112(3):1097-103 [PMID: 23340719]
  30. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9900-4 [PMID: 12118118]
  31. Nature. 2006 Jan 12;439(7073):161-7 [PMID: 16407945]
  32. J Comp Neurol. 2014 Apr 1;522(5):971-85 [PMID: 24115041]
  33. Chemosphere. 2005 Dec;61(9):1345-57 [PMID: 15896822]
  34. Environ Toxicol Chem. 2003 Jan;22(1):101-10 [PMID: 12503752]
  35. Clin Physiol Biochem. 1986;4(1):31-41 [PMID: 3514054]
  36. Fundam Appl Toxicol. 1997 May;37(1):1-15 [PMID: 9193919]
  37. Anal Chim Acta. 2008 Jan 14;606(2):135-50 [PMID: 18082645]
  38. Neurochem Res. 1994 Mar;19(3):283-8 [PMID: 8177367]
  39. Parassitologia. 2007 Sep;49(3):173-6 [PMID: 18410076]
  40. Nature. 2000 Apr 13;404(6779):752-5 [PMID: 10783886]
  41. Rev Environ Contam Toxicol. 1994;136:21-89 [PMID: 8029491]
  42. Chemosphere. 2015 Nov;139:181-9 [PMID: 26121603]
  43. Environ Health Perspect. 2003 Oct;111(13):1601-7 [PMID: 14551037]
  44. Ann Agric Environ Med. 2014;21(2):331-5 [PMID: 24959784]
  45. Environ Pollut. 2007 Sep;149(2):182-92 [PMID: 17399874]
  46. Biol Trace Elem Res. 2001 Winter;84(1-3):11-8 [PMID: 11817681]
  47. Parasitol Res. 2017 Jun;116(6):1745-1753 [PMID: 28466247]
  48. Environ Pollut. 2007 Feb;145(3):787-92 [PMID: 16814910]
  49. J Sports Med Phys Fitness. 1987 Sep;27(3):343-4 [PMID: 3431118]
  50. Allergy. 2001 Sep;56(9):813-24 [PMID: 11551246]
  51. Parasit Vectors. 2017 Feb 6;10(1):65 [PMID: 28166838]

Word Cloud

Created with Highcharts 10.0.0toadsEnvironmentaltracemetalstoadparasitestudydepurationhostusingintestineinfecteduninfectedassessmentpotentialssignificantwithinLagosmetropolisNigeriasoilstationsOxidativestresslowerconcentrationsirrespectivesexparasitologicalparasitespollutiontissuecomparedaimedassessingendoparasitesitesanthropogenicperturbationstotal120sexesalongside45samplescollectedthree3labeledDumpsiteLagoonfrontHighrisehandnetshand-pickingFebruaryOctober2018intestinaltissuessectionsexaminedbinoculardissectingmicroscopeAmericanOpticalCorporationModel570hematoxylineosinH&EstainassessedestimatinglevelsglutathioneperoxidaseGPxsuperoxidedismutaseSODcatalaseCATlipidperoxidationMDATracewaterlivertestedAtomicAbsorptionSpectrophotometryPhilipsmodelPU9100LeadPbcopperCunickelNicadmiumCdchromiumCrdetectedlocationsStrongnegativecorrelationsindicessuggestmighttakenamountsdemonstrateddepuratemetalburdendominantfactorimpactingparasiticinfectionintensitydeterminestrade-offharmbenefitHencecontrolledconditionsmayservebioremediationagenteventDepurationpotentialsupportedmildalterationsobservedcounterpartsexhibitedsevereglandularhyperplasiaincreasedconnectiveseverelystuntedvilliConsistentlyactivitiesbiochemicalbiomarkerscharacterizecorroboratedrawninferencesImpactsAfricancommonReuss1833effectstoad'sentericTaylor1924sampledAbundanceAllotmentBioaccumulationCorrelationEcologyanalysishealthimpactrisktoxicologyHostIntensityParasiteToxicologyZoology

Similar Articles

Cited By (5)