Effects of 11-Ketotestosterone on Development of the Previtellogenic Ovary in the Sterlet, .

Wei Wang, Hua Zhu, ZhaoHui Tian, Ai Sun, Ying Dong, Tian Dong, HongXia Hu
Author Information
  1. Wei Wang: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  2. Hua Zhu: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  3. ZhaoHui Tian: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  4. Ai Sun: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  5. Ying Dong: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  6. Tian Dong: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.
  7. HongXia Hu: Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, China.

Abstract

11-ketotestosterone (11-KT) is a non-aromatizable and the most potent androgen in a few teleost. It has been reported that 11-KT in serum had a high concentration and increased sharply before the period of yolk deposition in females of few fishes. The aim of this study was to analyze the role of 11-KT both and on ovarian development, related gene expression levels, Vitellogenin (Vtg) synthesis, and serum sex steroid concentrations in previtellogenic cultured sterlet (). Silastic strips embedded with 11-KT (5 or 25 mg/kg) were implanted for 30 days. Ovarian masculinization or sex reversal was not observed. Histological analysis showed that 11-KT promoted sterlet ovarian development in a dose-dependent manner. Vtg and testosterone (T) increased significantly, while 17β-estradiol (E2) decreased with no significant difference among groups. The expression of genes androgen receptor (), and lipoprotein lipase () were significantly increased in liver. However, 11-KT had no effect on the expression of and in ovary. , after incubation with 11-KT (10 and 100 μM) for 5 days, both T and E2 concentrations increased in both hepatic explants and ovarian explants culture medium; the concentration of Vtg also increased in hepatic explants culture medium. The expression of , and increased significantly in hepatic explants. However, only the expression of significantly increased in cultured ovarian explants. Altogether, these results suggest that 11-KT induced ovarian development, as well as Vtg and lipid synthesis, and could be an important factor facilitating the initiation of Vtg synthesis in the liver of the previtellogenic sterlet.

Keywords

References

  1. Gen Comp Endocrinol. 1994 Sep;95(3):399-408 [PMID: 7821777]
  2. Gen Comp Endocrinol. 2002 Oct 15;129(1):1-12 [PMID: 12409090]
  3. Mol Cell Endocrinol. 2017 Feb 5;441:76-85 [PMID: 27519632]
  4. Aquat Toxicol. 2004 Jan 7;66(1):15-23 [PMID: 14687976]
  5. Comp Biochem Physiol A Mol Integr Physiol. 2009 Mar;152(3):304-13 [PMID: 19036348]
  6. Steroids. 1977 Mar;29(3):383-98 [PMID: 871021]
  7. Comp Biochem Physiol A Mol Integr Physiol. 2001 Nov;130(4):701-14 [PMID: 11691606]
  8. Trends Endocrinol Metab. 2017 Nov;28(11):771-793 [PMID: 29031608]
  9. Toxicol Appl Pharmacol. 2007 Oct 15;224(2):116-25 [PMID: 17662327]
  10. Fish Physiol Biochem. 2010 Dec;36(4):923-32 [PMID: 19941163]
  11. Genetica. 2010 Jul;138(7):745-56 [PMID: 20386959]
  12. Gen Comp Endocrinol. 2012 Apr 1;176(2):132-43 [PMID: 22343137]
  13. Biol Reprod. 2012 Sep 21;87(3):64 [PMID: 22674392]
  14. Gen Comp Endocrinol. 2010 Sep 15;168(3):424-30 [PMID: 20553719]
  15. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  16. J Lipid Res. 2010 Nov;51(11):3250-8 [PMID: 20713648]
  17. Endocrinology. 2008 Dec;149(12):6300-10 [PMID: 18635653]
  18. J Steroid Biochem Mol Biol. 2011 Nov;127(3-5):149-54 [PMID: 21414407]
  19. Fish Physiol Biochem. 1995 Aug;14(4):313-22 [PMID: 24197499]
  20. Aquat Toxicol. 2009 May 5;92(3):131-9 [PMID: 19261340]
  21. Gen Comp Endocrinol. 1995 Sep;99(3):316-22 [PMID: 8536943]
  22. J Steroid Biochem Mol Biol. 1998 Oct;67(2):133-41 [PMID: 9877213]
  23. Mol Endocrinol. 2007 Mar;21(3):712-25 [PMID: 17192407]
  24. Biol Reprod. 2011 Apr;84(4):816-25 [PMID: 21148104]
  25. Gen Comp Endocrinol. 1999 Apr;114(1):132-41 [PMID: 10094866]
  26. Cell Tissue Res. 2005 May;320(2):323-9 [PMID: 15778855]
  27. Reproduction. 2007 May;133(5):955-67 [PMID: 17616725]
  28. Reprod Nutr Dev. 2005 May-Jun;45(3):377-82 [PMID: 15982462]
  29. Int Rev Cytol. 2004;239:1-46 [PMID: 15464851]
  30. Biochim Biophys Acta. 2012 Jan;1819(1):57-66 [PMID: 22019437]
  31. Gen Comp Endocrinol. 2002 Oct 15;129(1):27-38 [PMID: 12409093]
  32. J Steroid Biochem Mol Biol. 1992 May;42(3-4):351-6 [PMID: 1606046]
  33. Mol Endocrinol. 2004 Jan;18(1):97-104 [PMID: 14576339]
  34. Fish Physiol Biochem. 2017 Dec;43(6):1557-1569 [PMID: 28963671]
  35. Endocrinology. 2010 Apr;151(4):1668-76 [PMID: 20194729]
  36. Biol Reprod. 1999 Oct;61(4):1152-61 [PMID: 10491657]
  37. Gen Comp Endocrinol. 2010 Feb 1;165(3):367-89 [PMID: 19505465]
  38. J Theor Biol. 1987 Oct 7;128(3):349-57 [PMID: 3444342]
  39. Gen Comp Endocrinol. 2010 Jun 1;167(2):326-30 [PMID: 20346361]
  40. Comp Biochem Physiol B Biochem Mol Biol. 2019 Jun;232:51-59 [PMID: 30831206]
  41. J Mol Endocrinol. 2007 Oct;39(4):223-37 [PMID: 17909263]
  42. Gen Comp Endocrinol. 2003 Jun 15;132(2):248-55 [PMID: 12812772]
  43. Gen Comp Endocrinol. 2002 Nov;129(2):69-79 [PMID: 12441116]
  44. Gen Comp Endocrinol. 2015 Sep 15;221:94-100 [PMID: 25660471]
  45. Fish Physiol Biochem. 2006 Mar;32(1):25-33 [PMID: 20035475]
  46. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  47. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5774-8 [PMID: 2062857]
  48. J Mol Endocrinol. 2004 Dec;33(3):705-15 [PMID: 15591029]
  49. Nucleic Acids Res. 2001 May 1;29(9):e45 [PMID: 11328886]
  50. Mol Endocrinol. 2004 Apr;18(4):769-75 [PMID: 14630999]
  51. Endocrinology. 1999 Apr;140(4):1602-11 [PMID: 10098494]
  52. Reprod Biol Endocrinol. 2005 Nov 10;3:63 [PMID: 16281973]
  53. Sex Dev. 2013;7(6):308-15 [PMID: 23988442]
  54. Dev Dyn. 2004 Dec;231(4):859-70 [PMID: 15517586]
  55. FEBS Lett. 1996 Nov 18;397(2-3):250-2 [PMID: 8955357]
  56. J Biol Chem. 1999 Sep 3;274(36):25205-9 [PMID: 10464240]
  57. J Toxicol Environ Health A. 2009;72(3-4):184-95 [PMID: 19184733]
  58. Comp Biochem Physiol B Biochem Mol Biol. 2011 Apr;158(4):282-8 [PMID: 21199677]
  59. Comp Biochem Physiol A Mol Integr Physiol. 2013 Nov;166(3):496-502 [PMID: 23948118]
  60. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]

MeSH Term

Animals
Estradiol
Female
Fishes
Gene Expression Regulation, Developmental
Lipid Metabolism
Oocytes
Ovary
Sexual Maturation
Testosterone
Vitellogenins

Chemicals

Vitellogenins
Testosterone
Estradiol
11-ketotestosterone

Word Cloud

Created with Highcharts 10.0.011-KTincreasedVtgovarianexpressionexplantssynthesissterletsignificantlydevelopmentprevitellogenichepaticandrogenserumconcentrationsexconcentrationscultured5daysTE2liverHoweverovaryculturemediumlipid11-Ketotestosterone11-ketotestosteronenon-aromatizablepotentteleostreportedhighsharplyperiodyolkdepositionfemalesfishesaimstudyanalyzerolerelatedgenelevelsVitellogeninsteroidSilasticstripsembedded25mg/kgimplanted30OvarianmasculinizationreversalobservedHistologicalanalysisshowedpromoteddose-dependentmannertestosterone17β-estradioldecreasedsignificantdifferenceamonggroupsgenesreceptorlipoproteinlipaseeffectincubation10100μMalsoAltogetherresultssuggestinducedwellimportantfactorfacilitatinginitiationEffectsDevelopmentPrevitellogenicOvarySterlet

Similar Articles

Cited By (4)