A comparative analysis of drinking water employing metagenomics.

Kyle D Brumfield, Nur A Hasan, Menu B Leddy, Joseph A Cotruvo, Shah M Rashed, Rita R Colwell, Anwar Huq
Author Information
  1. Kyle D Brumfield: Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America. ORCID
  2. Nur A Hasan: University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, United States of America.
  3. Menu B Leddy: Essential Environmental and Engineering Systems, Huntington Beach, CA, United States of America. ORCID
  4. Joseph A Cotruvo: Joseph Cotruvo and Associates LLC, Washington, DC, United States of America.
  5. Shah M Rashed: Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America.
  6. Rita R Colwell: Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America. ORCID
  7. Anwar Huq: Maryland Pathogen Research Institute, University of Maryland, MD, College Park, United States of America.

Abstract

The microbiological content of drinking water traditionally is determined by employing culture-dependent methods that are unable to detect all microorganisms, especially those that are not culturable. High-throughput sequencing now makes it possible to determine the microbiome of drinking water. Thus, the natural microbiota of water and water distribution systems can now be determined more accurately and analyzed in significantly greater detail, providing comprehensive understanding of the microbial community of drinking water applicable to public health. In this study, shotgun metagenomic analysis was performed to determine the microbiological content of drinking water and to provide a preliminary assessment of tap, drinking fountain, sparkling natural mineral, and non-mineral bottled water. Predominant bacterial species detected were members of the phyla Actinobacteria and Proteobacteria, notably the genera Alishewanella, Salmonella, and Propionibacterium in non-carbonated non-mineral bottled water, Methyloversatilis and Methylibium in sparkling natural mineral water, and Mycobacterium and Afipia in tap and drinking fountain water. Fecal indicator bacteria, i.e., Escherichia coli or enterococci, were not detected in any samples examined in this study. Bacteriophages and DNA encoding a few virulence-associated factors were detected but determined to be present only at low abundance. Antibiotic resistance markers were detected only at abundance values below our threshold of confidence. DNA of opportunistic plant and animal pathogens was identified in some samples and these included bacteria (Mycobacterium spp.), protozoa (Acanthamoeba mauritaniensis and Acanthamoeba palestinensis), and fungi (Melampsora pinitorqua and Chryosporium queenslandicum). Archaeal DNA (Candidatus Nitrosoarchaeum) was detected only in sparkling natural mineral water. This preliminary study reports the complete microbiome (bacteria, viruses, fungi, and protists) of selected types of drinking water employing whole-genome high-throughput sequencing and bioinformatics. Investigation into activity and function of the organisms detected is in progress.

References

  1. Front Microbiol. 2019 Feb 05;10:101 [PMID: 30804903]
  2. PLoS One. 2017 Apr 20;12(4):e0173961 [PMID: 28426805]
  3. Microbiome. 2019 Jun 7;7(1):87 [PMID: 31174608]
  4. J Appl Microbiol. 2004;96(5):954-64 [PMID: 15078511]
  5. Can J Microbiol. 1987 Apr;33(4):286-9 [PMID: 3594309]
  6. Water Res. 2008 Jan;42(1-2):269-77 [PMID: 17659762]
  7. Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:887-899 [PMID: 10758901]
  8. FEMS Microbiol Lett. 2009 May;294(1):37-44 [PMID: 19493006]
  9. Clin Microbiol Rev. 2003 Apr;16(2):273-307 [PMID: 12692099]
  10. PLoS One. 2014 Jul 17;9(7):e102679 [PMID: 25033448]
  11. Int J Environ Res Public Health. 2010 Oct;7(10):3657-703 [PMID: 21139855]
  12. J Clin Microbiol. 2001 Oct;39(10):3461-5 [PMID: 11574556]
  13. Water Res. 2009 Sep;43(17):4197-206 [PMID: 19665751]
  14. Am J Public Health. 2017 Jan;107(1):180-185 [PMID: 27854523]
  15. Environ Sci Technol. 2015 Oct 20;49(20):12271-9 [PMID: 26397118]
  16. Science. 2014 Aug 29;345(6200):1048-52 [PMID: 25170151]
  17. PLoS Biol. 2015 Jan 20;13(1):e1002050 [PMID: 25602283]
  18. Int Microbiol. 2012 Dec;15(4):201-10 [PMID: 23844479]
  19. Environ Sci Technol. 2015 Jul 21;49(14):8432-40 [PMID: 26098899]
  20. J Hyg (Lond). 1983 Oct;91(2):167-78 [PMID: 6358342]
  21. J Mol Biol. 1991 Mar 20;218(2):349-64 [PMID: 2010913]
  22. Appl Environ Microbiol. 2001 Mar;67(3):1225-31 [PMID: 11229914]
  23. Antonie Van Leeuwenhoek. 2008 May;93(4):323-34 [PMID: 18038252]
  24. mBio. 2018 Feb 13;9(1): [PMID: 29440575]
  25. Int J Food Microbiol. 2002 Jan 30;72(1-2):73-6 [PMID: 11843415]
  26. Biomed Environ Sci. 2005 Apr;18(2):137-40 [PMID: 16001834]
  27. Sci Total Environ. 2019 Dec 1;694:133564 [PMID: 31400688]
  28. Microbiome. 2017 Sep 22;5(1):126 [PMID: 28938908]
  29. Int J Syst Evol Microbiol. 2015 Jul;65(7):2227-2233 [PMID: 26231539]
  30. Water Res. 2013 Jan 1;47(1):111-20 [PMID: 23084468]
  31. Demography. 2005 Feb;42(1):1-22 [PMID: 15782893]
  32. MMWR Morb Mortal Wkly Rep. 2017 Aug 11;64(53):1-143 [PMID: 28796757]
  33. Environ Res. 2017 Oct;158:82-93 [PMID: 28609649]
  34. PLoS Pathog. 2015 Jun 25;11(6):e1004867 [PMID: 26110535]
  35. Indian J Microbiol. 2016 Sep;56(3):247-64 [PMID: 27407289]
  36. FEMS Microbiol Rev. 2005 Nov;29(5):911-34 [PMID: 16219512]
  37. Environ Health Perspect. 2012 Sep;120(9):1272-9 [PMID: 22659405]
  38. Environ Monit Assess. 2011 May;176(1-4):225-38 [PMID: 20632090]
  39. Appl Environ Microbiol. 1982 Oct;44(4):972-87 [PMID: 7149722]
  40. Appl Environ Microbiol. 2006 Dec;72(12):7586-93 [PMID: 17028226]
  41. Int J Syst Evol Microbiol. 2012 Aug;62(Pt 8):1986-1991 [PMID: 22003035]
  42. Environ Sci Technol. 2015 May 19;49(10):6127-33 [PMID: 25902261]
  43. J Clin Microbiol. 2006 Dec;44(12):4515-27 [PMID: 17050818]
  44. PLoS One. 2014 May 16;9(5):e97876 [PMID: 24837716]
  45. Emerg Infect Dis. 2013 Aug;19(8):1239-44 [PMID: 23876503]
  46. Microb Ecol. 2018 Nov;76(4):899-910 [PMID: 29691611]
  47. Clin Microbiol Rev. 2016 Apr;29(2):239-90 [PMID: 26912567]
  48. Int J Food Microbiol. 2004 May 1;92(3):307-15 [PMID: 15145589]
  49. Epidemiol Infect. 2008 Feb;136(2):157-65 [PMID: 17475091]
  50. Appl Environ Microbiol. 2005 Jul;71(7):3624-32 [PMID: 16000770]
  51. Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents [PMID: 15353570]
  52. Front Microbiol. 2018 Oct 26;9:2435 [PMID: 30416489]
  53. Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):421-4 [PMID: 19196789]
  54. Sci Total Environ. 2019 Jun 15;669:785-797 [PMID: 30897437]
  55. Gastroenterology. 2015 May;148(6):1107-19 [PMID: 25575570]
  56. Front Microbiol. 2017 Jun 16;8:1133 [PMID: 28670309]
  57. Braz J Microbiol. 2013 May 14;44(1):97-103 [PMID: 24159289]
  58. Curr Environ Health Rep. 2016 Jun;3(2):161-7 [PMID: 27020801]
  59. Water Res. 2015 May 1;74:180-90 [PMID: 25732558]
  60. Front Microbiol. 2018 Nov 13;9:2695 [PMID: 30542327]
  61. BMC Bioinformatics. 2011 Sep 30;12:385 [PMID: 21961884]
  62. Appl Environ Microbiol. 2000 Mar;66(3):1249-51 [PMID: 10698803]
  63. Environ Microbiol. 2015 Mar;17(3):577-93 [PMID: 24612305]
  64. Rev Iberoam Micol. 2006 Sep;23(3):139-44 [PMID: 17196019]
  65. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  66. Water Res. 2014 Nov 15;65:224-34 [PMID: 25123436]
  67. J Water Health. 2004 Sep;2(3):201-14 [PMID: 15497816]
  68. Appl Environ Microbiol. 2002 Apr;68(4):1548-55 [PMID: 11916667]
  69. Water Res. 2019 Feb 1;149:375-385 [PMID: 30471533]
  70. Int J Environ Res Public Health. 2018 Oct 10;15(10): [PMID: 30309013]
  71. J Appl Microbiol. 2004;97(5):1077-86 [PMID: 15479425]
  72. Sci Total Environ. 2017 Sep 1;593-594:571-580 [PMID: 28360007]
  73. Appl Environ Microbiol. 2009 Sep;75(17):5714-8 [PMID: 19581476]
  74. J Clin Microbiol. 2004 Oct;42(10):4419-31 [PMID: 15472288]
  75. Annu Rev Genomics Hum Genet. 2017 Aug 31;18:65-86 [PMID: 28375652]
  76. J Health Popul Nutr. 2016 Jun 07;35(1):17 [PMID: 27267213]
  77. Int J Syst Evol Microbiol. 2018 Oct;68(10):3084-3095 [PMID: 30124400]
  78. Trends Microbiol. 2019 Aug;27(8):670-677 [PMID: 31031092]
  79. J Water Health. 2019 Feb;17(1):72-83 [PMID: 30758305]
  80. Appl Environ Microbiol. 2002 Dec;68(12):5796-803 [PMID: 12450798]
  81. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):722-7 [PMID: 26733683]
  82. Water Res. 2012 Jul;46(11):3612-22 [PMID: 22534119]
  83. Appl Environ Microbiol. 2000 Apr;66(4):1702-5 [PMID: 10742264]
  84. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):E288-97 [PMID: 21709225]
  85. Environ Sci Technol. 2014 Apr 1;48(7):4038-47 [PMID: 24625288]
  86. Korean J Parasitol. 2009 Dec;47(4):337-44 [PMID: 19967080]
  87. PLoS One. 2015 Mar 24;10(3):e0121284 [PMID: 25803794]
  88. J Appl Microbiol. 2006 Jul;101(1):206-12 [PMID: 16834608]
  89. Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2199-2203 [PMID: 19897613]
  90. Virus Genes. 2016 Feb;52(1):117-26 [PMID: 26757942]
  91. Clin Microbiol Rev. 2012 Jan;25(1):106-41 [PMID: 22232373]
  92. Rev Infect Dis. 1981 Sep-Oct;3(5):960-72 [PMID: 7339828]
  93. Virology. 2015 May;479-480:2-25 [PMID: 25771806]
  94. J Water Health. 2019 Apr;17(2):295-307 [PMID: 30942779]
  95. Int J Syst Evol Microbiol. 2009 Sep;59(Pt 9):2313-6 [PMID: 19620373]
  96. Front Microbiol. 2016 Feb 01;7:45 [PMID: 26870010]
  97. BMC Biol. 2014 Nov 12;12:87 [PMID: 25387460]
  98. Cell. 2018 Nov 1;175(4):962-972.e10 [PMID: 30388453]

Grants

  1. R01 ES030317/NIEHS NIH HHS

MeSH Term

Bacteria
Colony Count, Microbial
DNA
Drinking Water
Genes, Bacterial
Metagenomics
Microbiota
Principal Component Analysis
Virulence

Chemicals

Drinking Water
DNA

Word Cloud

Created with Highcharts 10.0.0waterdrinkingdetectednaturaldeterminedemployingstudysparklingmineralbacteriaDNAmicrobiologicalcontentsequencingnowdeterminemicrobiomeanalysispreliminarytapfountainnon-mineralbottledMycobacteriumsamplesabundanceAcanthamoebafungitraditionallyculture-dependentmethodsunabledetectmicroorganismsespeciallyculturableHigh-throughputmakespossibleThusmicrobiotadistributionsystemscanaccuratelyanalyzedsignificantlygreaterdetailprovidingcomprehensiveunderstandingmicrobialcommunityapplicablepublichealthshotgunmetagenomicperformedprovideassessmentPredominantbacterialspeciesmembersphylaActinobacteriaProteobacterianotablygeneraAlishewanellaSalmonellaPropionibacteriumnon-carbonatedMethyloversatilisMethylibiumAfipiaFecalindicatorieEscherichiacolienterococciexaminedBacteriophagesencodingvirulence-associatedfactorspresentlowAntibioticresistancemarkersvaluesthresholdconfidenceopportunisticplantanimalpathogensidentifiedincludedsppprotozoamauritaniensispalestinensisMelampsorapinitorquaChryosporiumqueenslandicumArchaealCandidatusNitrosoarchaeumreportscompletevirusesprotistsselectedtypeswhole-genomehigh-throughputbioinformaticsInvestigationactivityfunctionorganismsprogresscomparativemetagenomics

Similar Articles

Cited By