Existing bitter medicines for fighting 2019-nCoV-associated infectious diseases.

Xiangqi Li, Chaobao Zhang, Lianyong Liu, Mingjun Gu
Author Information
  1. Xiangqi Li: Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China.
  2. Chaobao Zhang: State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
  3. Lianyong Liu: Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai, China.
  4. Mingjun Gu: Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China.

Abstract

The sudden outbreak of COVID-19 has led to more than seven thousand deaths. Unfortunately, there are no specific drugs available to cure this disease. Type 2 taste receptors (TAS2Rs) may play an important role in host defense mechanisms. Based on the idea of host-directed therapy (HDT), we performed a negative co-expression analysis using big data of 60 000 Affymetrix expression arrays and 5000 TCGA data sets to determine the functions of TAS2R10, which can be activated by numerous bitter substances. Excitingly, we found that the main functions of TAS2R10 involved controlling infectious diseases caused by bacteria, viruses, and parasites, suggesting that TAS2R10 is a key trigger of host defense pathways. To quickly guide the clinical treatment of 2019-nCoV, we searched currently available drugs that are agonists of TAS2Rs. We identified many cheap, available, and safe medicines, such as diphenidol, quinine, chloroquine, artemisinin, chlorpheniramine, yohimbine, and dextromethorphan, which may target the most common symptoms caused by 2019-nCoV. We suggest that a cocktail-like recipe of existing bitter drugs may help doctors to fight this catastrophic disease and that the general public may drink or eat bitter substances, such as coffee, tea, or bitter vegetables, to reduce the risk of infection.

Keywords

References

  1. Arch Dis Child Fetal Neonatal Ed. 2018 Nov;103(6):F523-F529 [PMID: 29437799]
  2. Lancet. 2020 Feb 15;395(10223):470-473 [PMID: 31986257]
  3. Front Immunol. 2018 Dec 20;9:3022 [PMID: 30619363]
  4. J Clin Invest. 2012 Nov;122(11):4145-59 [PMID: 23041624]
  5. Semin Cell Dev Biol. 2013 Mar;24(3):215-21 [PMID: 22947915]
  6. Front Pharmacol. 2019 May 08;10:486 [PMID: 31139079]
  7. Rev Physiol Biochem Pharmacol. 2005;154:37-72 [PMID: 16032395]
  8. Annu Rev Med. 2017 Jan 14;68:317-330 [PMID: 27813878]
  9. Lancet. 2020 Feb 15;395(10223):514-523 [PMID: 31986261]
  10. Front Microbiol. 2019 May 07;10:962 [PMID: 31134013]
  11. J Gen Physiol. 2017 Feb;149(2):181-197 [PMID: 28053191]
  12. Sci China Life Sci. 2020 May;63(5):737-749 [PMID: 31290095]
  13. FASEB J. 2014 Mar;28(3):1181-97 [PMID: 24285091]
  14. BMJ. 2020 Jan 29;368:m351 [PMID: 31996342]
  15. Eur J Clin Invest. 2020 Mar;50(3):e13209 [PMID: 32003000]
  16. Front Physiol. 2019 Oct 02;10:1267 [PMID: 31632299]
  17. Front Immunol. 2018 Dec 11;9:2949 [PMID: 30619309]
  18. Drugs Real World Outcomes. 2019 Jun;6(2):47-57 [PMID: 31073977]
  19. FASEB J. 2020 May;34(5):6008-6016 [PMID: 32281695]
  20. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  21. FASEB J. 2012 Dec;26(12):4827-31 [PMID: 22964302]
  22. J Toxicol Clin Toxicol. 1998;36(1-2):33-9 [PMID: 9541039]
  23. Eur J Pharmacol. 2020 Mar 15;871:172917 [PMID: 31935395]
  24. Hum Cell. 2017 Apr;30(2):106-116 [PMID: 27838883]
  25. J Clin Invest. 2014 Mar;124(3):1393-405 [PMID: 24531552]
  26. PLoS One. 2017 May 3;12(5):e0176851 [PMID: 28467517]
  27. N Engl J Med. 2020 Feb 27;382(9):872-874 [PMID: 31991079]
  28. Pharmacol Ther. 2014 Apr;142(1):126-39 [PMID: 24316259]
  29. Turk Pediatri Ars. 2015 Dec 01;50(4):248-50 [PMID: 26884696]
  30. Nat Rev Drug Discov. 2016 May;15(5):327-47 [PMID: 26868298]
  31. Am J Clin Dermatol. 2001;2(1):27-32 [PMID: 11702618]
  32. Biosci Trends. 2020 Mar 16;14(1):69-71 [PMID: 31996494]
  33. Hum Genomics. 2018 Jan 19;12(1):2 [PMID: 29351810]
  34. Expert Rev Gastroenterol Hepatol. 2018 Dec;12(12):1183-1191 [PMID: 30791788]
  35. Lancet. 2020 Feb 22;395(10224):e35-e36 [PMID: 32035018]
  36. Science. 2016 Mar 18;351(6279):1329-33 [PMID: 26847546]
  37. Laryngoscope. 2017 Jan;127(1):44-51 [PMID: 27650657]
  38. Proc Natl Acad Sci U S A. 2018 May 22;115(21):5552-5557 [PMID: 29735652]
  39. J Travel Med. 2020 Mar 13;27(2): [PMID: 31943059]
  40. Nat Commun. 2019 Oct 3;10(1):4496 [PMID: 31582750]
  41. Mol Biol Evol. 2014 Feb;31(2):303-9 [PMID: 24202612]
  42. Pharmacol Ther. 2016 Mar;159:1-22 [PMID: 26826604]
  43. J Pharm Pharmacol. 2013 Jun;65(6):847-54 [PMID: 23647678]
  44. Acta Physiol (Oxf). 2016 Apr;216(4):407-20 [PMID: 26493384]
  45. Drugs. 2005;65(12):1621-50 [PMID: 16060698]
  46. Semin Immunopathol. 2017 Jul;39(5):529-539 [PMID: 28466096]
  47. Chem Senses. 2010 Feb;35(2):157-70 [PMID: 20022913]
  48. Neurosci Lett. 2013 Sep 27;552:62-5 [PMID: 23916656]
  49. Clin Drug Investig. 2018 Aug;38(8):653-671 [PMID: 29737455]
  50. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  51. Forensic Sci Med Pathol. 2015 Dec;11(4):570-6 [PMID: 26481789]
  52. BMJ Case Rep. 2014 Oct 17;2014: [PMID: 25326558]
  53. Phytother Res. 2018 Nov;32(11):2131-2145 [PMID: 30039597]
  54. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5564-5569 [PMID: 30819885]
  55. J Agric Food Chem. 2013 Jan 9;61(1):53-60 [PMID: 23214402]
  56. Future Med Chem. 2017 Feb;9(2):169-178 [PMID: 28128003]
  57. Cell Mol Life Sci. 2015 Jan;72(2):217-36 [PMID: 25323130]
  58. Am J Rhinol Allergy. 2014 Sep-Oct;28(5):366-73 [PMID: 25198020]
  59. Eur J Drug Metab Pharmacokinet. 2017 Oct;42(5):745-756 [PMID: 28070879]
  60. BMC Microbiol. 2014 Nov 18;14:273 [PMID: 25403758]
  61. J Agric Food Chem. 2007 Jul 25;55(15):6236-43 [PMID: 17595105]

Grants

  1. PWZxk2017-07/Pudong Health and Family Planning Commission of Shanghai
  2. PWZzk2017-29/Pudong Health and Family Planning Commission of Shanghai
  3. PWRI2018-02/Pudong Health and Family Planning Commission of Shanghai
  4. PKJ2019-Y21/Pudong New Area Science and Technology Commission
  5. 2019M651615/China Postdoctoral Science Foundation
  6. 2018229/China Postdoctoral Science Foundation

MeSH Term

Antiviral Agents
Betacoronavirus
COVID-19
Computational Biology
Coronavirus Infections
Databases, Genetic
Databases, Pharmaceutical
Gene Expression Profiling
Gene Expression Regulation
Humans
Pandemics
Pneumonia, Viral
Receptors, Cell Surface
Receptors, G-Protein-Coupled
SARS-CoV-2

Chemicals

Antiviral Agents
Receptors, Cell Surface
Receptors, G-Protein-Coupled
TAS2R10 protein, human
taste receptors, type 2

Word Cloud

Created with Highcharts 10.0.0bittermaydrugsavailablediseaseTAS2RsTAS2R10infectious2019-nCoVCOVID-192tastereceptorshostdefensedatafunctionssubstancesdiseasescausedmedicinessuddenoutbreakledseventhousanddeathsUnfortunatelyspecificcureTypeplayimportantrolemechanismsBasedideahost-directedtherapyHDTperformednegativeco-expressionanalysisusingbig60 000Affymetrixexpressionarrays5000TCGAsetsdeterminecanactivatednumerousExcitinglyfoundmaininvolvedcontrollingbacteriavirusesparasitessuggestingkeytriggerpathwaysquicklyguideclinicaltreatmentsearchedcurrentlyagonistsidentifiedmanycheapsafediphenidolquininechloroquineartemisininchlorpheniramineyohimbinedextromethorphantargetcommonsymptomssuggestcocktail-likerecipeexistinghelpdoctorsfightcatastrophicgeneralpublicdrinkeatcoffeeteavegetablesreduceriskinfectionExistingfighting2019-nCoV-associatedcoronaviruscytokinestormtype

Similar Articles

Cited By