Killer cell proteases can target viral immediate-early proteins to control human cytomegalovirus infection in a noncytotoxic manner.

Liling Shan, Shuang Li, Jan Meeldijk, Bernadet Blijenberg, Astrid Hendriks, Karlijn J W M van Boxtel, Sara P H van den Berg, Ian J Groves, Martin Potts, Adriana Svrlanska, Thomas Stamminger, Mark R Wills, Niels Bovenschen
Author Information
  1. Liling Shan: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
  2. Shuang Li: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands. ORCID
  3. Jan Meeldijk: Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
  4. Bernadet Blijenberg: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
  5. Astrid Hendriks: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
  6. Karlijn J W M van Boxtel: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
  7. Sara P H van den Berg: Department of Medicine, University of Cambridge, Cambridge, United Kingdom.
  8. Ian J Groves: Department of Medicine, University of Cambridge, Cambridge, United Kingdom. ORCID
  9. Martin Potts: Department of Medicine, University of Cambridge, Cambridge, United Kingdom. ORCID
  10. Adriana Svrlanska: Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany. ORCID
  11. Thomas Stamminger: Institute for Virology, Ulm University Medical Center, Ulm, Germany. ORCID
  12. Mark R Wills: Department of Medicine, University of Cambridge, Cambridge, United Kingdom. ORCID
  13. Niels Bovenschen: Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands. ORCID

Abstract

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital defects and can trigger devastating disease in immune-suppressed patients. Cytotoxic lymphocytes (CD8+ T cells and NK cells) control HCMV infection by releasing interferon-γ and five granzymes (GrA, GrB, GrH, GrK, GrM), which are believed to kill infected host cells through cleavage of intracellular death substrates. However, it has recently been demonstrated that the in vivo killing capacity of cytotoxic T cells is limited and multiple T cell hits are required to kill a single virus-infected cell. This raises the question whether cytotoxic lymphocytes can use granzymes to control HCMV infection in a noncytotoxic manner. Here, we demonstrate that (primary) cytotoxic lymphocytes can block HCMV dissemination independent of host cell death, and interferon-α/β/γ. Prior to killing, cytotoxic lymphocytes induce the degradation of viral immediate-early (IE) proteins IE1 and IE2 in HCMV-infected cells. Intriguingly, both IE1 and/or IE2 are directly proteolyzed by all human granzymes, with GrB and GrM being most efficient. GrB and GrM cleave IE1 after Asp398 and Leu414, respectively, likely resulting in IE1 aberrant cellular localization, IE1 instability, and functional impairment of IE1 to interfere with the JAK-STAT signaling pathway. Furthermore, GrB and GrM cleave IE2 after Asp184 and Leu173, respectively, resulting in IE2 aberrant cellular localization and functional abolishment of IE2 to transactivate the HCMV UL112 early promoter. Taken together, our data indicate that cytotoxic lymphocytes can also employ noncytotoxic ways to control HCMV infection, which may be explained by granzyme-mediated targeting of indispensable viral proteins during lytic infection.

References

  1. Biochem Biophys Res Commun. 2007 May 4;356(2):499-504 [PMID: 17367754]
  2. Cell Death Differ. 2014 Mar;21(3):416-26 [PMID: 24185622]
  3. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14506-11 [PMID: 11121054]
  4. Cell Death Differ. 2013 Mar;20(3):419-29 [PMID: 23099853]
  5. Int Immunol. 2005 Nov;17(11):1419-28 [PMID: 16186162]
  6. Immunity. 2016 Feb 16;44(2):233-45 [PMID: 26872694]
  7. Methods Mol Biol. 2014;1116:73-87 [PMID: 24395358]
  8. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12536-41 [PMID: 10535957]
  9. J Cell Biol. 2003 Mar 17;160(6):875-85 [PMID: 12629051]
  10. J Virol. 1995 Dec;69(12):7960-70 [PMID: 7494309]
  11. J Clin Virol. 2008 Mar;41(3):180-5 [PMID: 18164651]
  12. PLoS One. 2011;6(8):e22645 [PMID: 21857942]
  13. Curr Top Microbiol Immunol. 2008;325:281-95 [PMID: 18637512]
  14. J Virol. 2001 Feb;75(4):1870-8 [PMID: 11160686]
  15. J Virol. 1991 Jul;65(7):3839-52 [PMID: 1645794]
  16. J Immunol. 2010 Dec 15;185(12):7605-13 [PMID: 21059895]
  17. Clin Microbiol Rev. 2009 Jan;22(1):76-98, Table of Contents [PMID: 19136435]
  18. J Virol. 2017 Apr 28;91(10): [PMID: 28250117]
  19. Clin Immunol. 2014 Jan;150(1):1-11 [PMID: 24316590]
  20. Clin Microbiol Infect. 2007 Oct;13(10):953-63 [PMID: 17803749]
  21. J Immunol. 2008 Jun 15;180(12):8184-91 [PMID: 18523284]
  22. J Biol Chem. 2007 Feb 16;282(7):4545-52 [PMID: 17179148]
  23. J Virol. 2005 Jan;79(1):661-7 [PMID: 15596864]
  24. J Virol. 2007 Apr;81(7):3109-23 [PMID: 17202209]
  25. Arthritis Rheumatol. 2017 Jan;69(1):213-224 [PMID: 27696741]
  26. Chem Biol. 2005 May;12(5):567-77 [PMID: 15911377]
  27. Nat Rev Immunol. 2002 Jun;2(6):401-9 [PMID: 12093006]
  28. Clin Infect Dis. 2013 Dec;57 Suppl 4:S196-9 [PMID: 24257427]
  29. Genome Biol. 2001;2(12):REVIEWS3014 [PMID: 11790262]
  30. Immunol Rev. 2006 Jun;211:225-35 [PMID: 16824131]
  31. Cell Death Differ. 2014 Mar;21(3):359-68 [PMID: 24413154]
  32. J Med Virol. 2014 Nov;86(11):1953-61 [PMID: 24173908]
  33. J Immunol. 2008 Sep 15;181(6):3818-22 [PMID: 18768835]
  34. J Gen Virol. 1998 Dec;79 ( Pt 12):3039-47 [PMID: 9880020]
  35. J Virol. 2014 Sep;88(18):10894-908 [PMID: 25008941]
  36. Annu Rev Immunol. 2008;26:389-420 [PMID: 18304003]
  37. J Virol. 2008 Nov;82(21):10444-54 [PMID: 18701593]
  38. Immunol Rev. 2010 May;235(1):117-27 [PMID: 20536559]
  39. Biochem J. 2011 Aug 1;437(3):431-42 [PMID: 21564021]
  40. Viruses. 2009 Dec;1(3):760-79 [PMID: 21994568]
  41. Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7829-34 [PMID: 11427719]
  42. Clin Diagn Lab Immunol. 2001 May;8(3):628-31 [PMID: 11329470]
  43. Front Immunol. 2017 Jun 26;8:733 [PMID: 28694811]
  44. J Virol. 1993 Oct;67(10):6201-14 [PMID: 8396676]
  45. J Biol Chem. 2009 Feb 6;284(6):3504-12 [PMID: 19059912]
  46. J Biomed Biotechnol. 2011;2011:954602 [PMID: 22174559]
  47. Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17234-9 [PMID: 15572445]
  48. J Gen Virol. 2016 Sep;97(9):2387-2398 [PMID: 27411311]
  49. Immunol Res. 2012 Dec;54(1-3):140-51 [PMID: 22454101]

Grants

  1. MR/S00081X/1/Medical Research Council

MeSH Term

Amino Acid Motifs
Cytomegalovirus
Cytomegalovirus Infections
Granzymes
Host-Pathogen Interactions
Humans
Immediate-Early Proteins
Killer Cells, Natural
Proteolysis
T-Lymphocytes, Cytotoxic
Trans-Activators

Chemicals

IE1 protein, cytomegalovirus
IE2 protein, Cytomegalovirus
Immediate-Early Proteins
Trans-Activators
Granzymes

Word Cloud

Created with Highcharts 10.0.0HCMVIE1canlymphocytescellsinfectioncytotoxicIE2viralcontrolGrBGrMcellTgranzymesnoncytotoxicproteinscytomegaloviruskillhostdeathkillingmannerimmediate-earlyhumancleaverespectivelyresultingaberrantcellularlocalizationfunctionalHumanfrequentcausecongenitaldefectstriggerdevastatingdiseaseimmune-suppressedpatientsCytotoxicCD8+NKreleasinginterferon-γfiveGrAGrHGrKbelievedinfectedcleavageintracellularsubstratesHoweverrecentlydemonstratedvivocapacitylimitedmultiplehitsrequiredsinglevirus-infectedraisesquestionwhetherusedemonstrateprimaryblockdisseminationindependentinterferon-α/β/γPriorinducedegradationIEHCMV-infectedIntriguinglyand/ordirectlyproteolyzedefficientAsp398Leu414likelyinstabilityimpairmentinterfereJAK-STATsignalingpathwayFurthermoreAsp184Leu173abolishmenttransactivateUL112earlypromoterTakentogetherdataindicatealsoemploywaysmayexplainedgranzyme-mediatedtargetingindispensablelyticKillerproteasestarget

Similar Articles

Cited By