Bayesian analysis of survival data with missing censoring indicators.

Naomi C Brownstein, Veronica Bunn, Luis M Castro, Debajyoti Sinha
Author Information
  1. Naomi C Brownstein: Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida. ORCID
  2. Veronica Bunn: Department of Statistics, Florida State University, Tallahassee, Florida. ORCID
  3. Luis M Castro: Department of Statistics, Pontificia Universidad Católica de Chile, Santiago, Chile. ORCID
  4. Debajyoti Sinha: Department of Statistics, Florida State University, Tallahassee, Florida.

Abstract

In some large clinical studies, it may be impractical to perform the physical examination to every subject at his/her last monitoring time in order to diagnose the occurrence of the event of interest. This gives rise to survival data with missing censoring indicators where the probability of missing may depend on time of last monitoring and some covariates. We present a fully Bayesian semi-parametric method for such survival data to estimate regression parameters of the proportional hazards model of Cox. Theoretical investigation and simulation studies show that our method performs better than competing methods. We apply the proposed method to analyze the survival data with missing censoring indicators from the Orofacial Pain: Prospective Evaluation and Risk Assessment study.

Keywords

References

  1. J Pain. 2011 Nov;12(11 Suppl):T4-11.e1-2 [PMID: 22074751]
  2. Stat Methods Med Res. 2018 Nov;27(11):3411-3419 [PMID: 28633606]
  3. J Pain. 2011 Nov;12(11 Suppl):T61-74 [PMID: 22074753]
  4. J Pain. 2013 Dec;14(12 Suppl):T116-24 [PMID: 24275219]
  5. J Pain. 2011 Nov;12(11 Suppl):T46-60 [PMID: 22074752]
  6. J Pain. 2011 Nov;12(11 Suppl):T12-26 [PMID: 22074749]
  7. Stat Med. 2015 Dec 30;34(30):3984-96 [PMID: 26242613]
  8. J Pain. 2013 Dec;14(12 Suppl):T2-19 [PMID: 24275220]

Grants

  1. /Gustavus and Louise Pfeiffer Research Foundation
  2. R01 DE016558/NIDCR NIH HHS
  3. R03 CA205018/NCI NIH HHS
  4. R01 CA069222/NCI NIH HHS
  5. /Millennium Science Initiative of the Ministry of Economy, Development, and Tourism
  6. U01 DE017018/NIDCR NIH HHS
  7. P01 NS045685/NINDS NIH HHS
  8. FONDECYT 1170258/Chilean government
  9. P30 CA076292/NCI NIH HHS

MeSH Term

Bayes Theorem
Computer Simulation
Female
Humans
Male
Probability
Proportional Hazards Models
Risk Assessment
Survival Analysis

Word Cloud

Created with Highcharts 10.0.0datamissingsurvivalcensoringindicatorsmethodstudiesmaylastmonitoringtimeeventBayesianproportionalhazardslargeclinicalimpracticalperformphysicalexaminationeverysubjecthis/herorderdiagnoseoccurrenceinterestgivesriseprobabilitydependcovariatespresentfullysemi-parametricestimateregressionparametersmodelCoxTheoreticalinvestigationsimulationshowperformsbettercompetingmethodsapplyproposedanalyzeOrofacialPain:ProspectiveEvaluationRiskAssessment studyanalysisinterimadjudicationsemiparametricBayestime-to-event

Similar Articles

Cited By

No available data.