Reconstruction of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using boolean networks.

Tania Timmermann, Bernardo González, Gonzalo A Ruz
Author Information
  1. Tania Timmermann: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
  2. Bernardo González: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
  3. Gonzalo A Ruz: Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile. gonzalo.ruz@uai.cl. ORCID

Abstract

BACKGROUND: An important process for plant survival is the immune system. The induced systemic resistance (ISR) triggered by beneficial microbes is an important cost-effective defense mechanism by which plants are primed to an eventual pathogen attack. Defense mechanisms such as ISR depend on an accurate and context-specific regulation of gene expression. Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRNs). Here, we explore the regulatory mechanism of the ISR defense response triggered by the beneficial bacterium Paraburkholderia phytofirmans PsJN in Arabidopsis thaliana plants infected with Pseudomonas syringae DC3000. To achieve this, a GRN underlying the ISR response was inferred using gene expression time-series data of certain defense-related genes, differential evolution, and threshold Boolean networks.
RESULTS: One thousand threshold Boolean networks were inferred that met the restriction of the desired dynamics. From these networks, a consensus network was obtained that helped to find plausible interactions between the genes. A representative network was selected from the consensus network and biological restrictions were applied to it. The dynamics of the selected network showed that the largest attractor, a limit cycle of length 3, represents the final stage of the defense response (12, 18, and 24 h). Also, the structural robustness of the GRN was studied through the networks' attractors.
CONCLUSIONS: A computational intelligence approach was designed to reconstruct a GRN underlying the ISR defense response in plants using gene expression time-series data of A. thaliana colonized by P. phytofirmans PsJN and subsequently infected with P. syringae DC3000. Using differential evolution, 1000 GRNs from time-series data were successfully inferred. Through the study of the network dynamics of the selected GRN, it can be concluded that it is structurally robust since three mutations were necessary to completely disarm the Boolean trajectory that represents the biological data. The proposed method to reconstruct GRNs is general and can be used to infer other biologically relevant networks to formulate new biological hypotheses.

Keywords

References

  1. Pac Symp Biocomput. 1999;:17-28 [PMID: 10380182]
  2. Mol Plant Microbe Interact. 2003 Apr;16(4):295-305 [PMID: 12744458]
  3. Plant Physiol. 2008 Jul;147(3):1347-57 [PMID: 18467450]
  4. BMC Syst Biol. 2014 Mar 26;8:37 [PMID: 24669835]
  5. Annu Rev Phytopathol. 2014;52:347-75 [PMID: 24906124]
  6. Curr Opin Plant Biol. 2007 Aug;10(4):366-71 [PMID: 17644023]
  7. Mol Plant Microbe Interact. 2017 Mar;30(3):215-230 [PMID: 28118091]
  8. Plant Physiol. 2012 May;159(1):266-85 [PMID: 22392279]
  9. Front Plant Sci. 2015 Mar 25;6:170 [PMID: 25859250]
  10. Annu Rev Phytopathol. 1998;36:453-83 [PMID: 15012509]
  11. Plant J. 2015 Sep;83(6):1019-33 [PMID: 26216741]
  12. Mol Biosyst. 2013 Jul;9(7):1726-35 [PMID: 23579205]
  13. Annu Rev Cell Dev Biol. 2012;28:489-521 [PMID: 22559264]
  14. PLoS One. 2008 Feb 27;3(2):e1672 [PMID: 18301750]
  15. PLoS One. 2013 Jul 15;8(7):e69435 [PMID: 23869243]
  16. J Theor Biol. 1969 Mar;22(3):437-67 [PMID: 5803332]
  17. Curr Opin Plant Biol. 2008 Aug;11(4):443-8 [PMID: 18585955]
  18. PLoS Comput Biol. 2017 Sep 20;13(9):e1005744 [PMID: 28931004]
  19. PLoS Pathog. 2006 Nov;2(11):e123 [PMID: 17096590]
  20. Nat Chem Biol. 2009 May;5(5):308-16 [PMID: 19377457]
  21. Plant Cell. 2001 Jul;13(7):1499-510 [PMID: 11449047]
  22. Pac Symp Biocomput. 1998;:18-29 [PMID: 9697168]
  23. World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50 [PMID: 22805914]
  24. Annu Rev Phytopathol. 2009;47:177-206 [PMID: 19400653]
  25. Phytochemistry. 2009 Sep;70(13-14):1560-70 [PMID: 19796781]
  26. Plant J. 2006 Nov;48(4):592-605 [PMID: 17059405]
  27. Interdiscip Toxicol. 2009 Mar;2(1):1-12 [PMID: 21217838]
  28. Plant Cell. 2003 Jan;15(1):165-78 [PMID: 12509529]
  29. Plant Cell. 1996 Dec;8(12):2309-23 [PMID: 8989885]
  30. Plant Cell. 2004 Jul;16(7):1938-50 [PMID: 15208388]
  31. PLoS One. 2019 Aug 22;14(8):e0221358 [PMID: 31437216]
  32. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675-9 [PMID: 7567995]
  33. Bioinformatics. 2007 Apr 1;23(7):866-74 [PMID: 17267426]
  34. Plant Cell. 2013 Feb;25(2):744-61 [PMID: 23435661]
  35. Proc Natl Acad Sci U S A. 1999 May 25;96(11):5995-6000 [PMID: 10339530]
  36. Front Plant Sci. 2013 Apr 30;4:110 [PMID: 23658556]
  37. Annu Rev Phytopathol. 2005;43:83-116 [PMID: 16078878]
  38. Biol Res. 2014 Nov 25;47:64 [PMID: 25723815]

Grants

  1. 1151130/FONDECYT
  2. 1180706/FONDECYT
  3. FB0002/Center of Applied Ecology and Sustainability (CAPES)
  4. NC130030/Millennium Nucleus Center for Plant Systems and Synthetic Biology

MeSH Term

Arabidopsis
Burkholderiaceae
Disease Resistance
Gene Regulatory Networks
Pseudomonas syringae

Word Cloud

Created with Highcharts 10.0.0networksnetworkISRdefensegeneresponseregulatoryGRNdataBooleansystemicresistanceplantsexpressiongenesGRNsphytofirmanssyringaeinferredusingtime-seriesevolutiondynamicsselectedbiologicalimportantinducedtriggeredbeneficialmechanismParaburkholderiaPsJNArabidopsisthalianainfectedPseudomonasDC3000underlyingdifferentialthresholdconsensusrepresentsreconstructPcanBACKGROUND:processplantsurvivalimmunesystemmicrobescost-effectiveprimedeventualpathogenattackDefensemechanismsdependaccuratecontext-specificregulationInteractionsproductsgiverisecomplexcircuitsknownexplorebacteriumachievecertaindefense-relatedRESULTS:Onethousandmetrestrictiondesiredobtainedhelpedfindplausibleinteractionsrepresentativerestrictionsappliedshowedlargestattractorlimitcyclelength3finalstage121824hAlsostructuralrobustnessstudiednetworks'attractorsCONCLUSIONS:computationalintelligenceapproachdesignedcolonizedsubsequentlyUsing1000successfullystudyconcludedstructurallyrobustsincethreemutationsnecessarycompletelydisarmtrajectoryproposedmethodgeneralusedinferbiologicallyrelevantformulatenewhypothesesReconstructionbooleanDifferentialGeneInduced

Similar Articles

Cited By