Evaluation of the profiles of CB cannabinoid receptor signalling bias using joint kinetic modelling.

Xiao Zhu, David B Finlay, Michelle Glass, Stephen B Duffull
Author Information
  1. Xiao Zhu: Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand. ORCID
  2. David B Finlay: Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand. ORCID
  3. Michelle Glass: Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand. ORCID
  4. Stephen B Duffull: Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand.

Abstract

BACKGROUND AND PURPOSE: Biased agonism describes the ability of ligands to differentially regulate multiple signalling pathways when coupled to a single receptor. Signalling is affected by rapid agonist-induced receptor internalisation. Hence, the conventional use of equilibrium models may not be optimal, because (i) receptor numbers vary with time and, in addition, (ii) some pathways may show non-monotonic profiles over time.
EXPERIMENTAL APPROACH: Data were available from internalisation, cAMP inhibition and phosphorylation of ERK (pERK) of the cannabinoid-1 (CB ) receptor using a concentration series of six CB ligands (CP55,940, WIN55,212-2, anandamide, 2-arachidonylglycerol, Δ -tetrahydrocannabinol and BAY59,3074). The joint kinetic model of CB signalling was developed to simultaneously describe the time-dependent activities in three signalling pathways. Based on the insights from the kinetic model, fingerprint profiles of CB ligand bias were constructed and visualised.
KEY RESULTS: A joint kinetic model was able to capture the signalling profiles across all pathways for the CB receptor simultaneously for a system that was not at equilibrium. WIN55,212-2 had a similar pattern as 2-arachidonylglycerol (reference). The other agonists displayed bias towards internalisation compared to cAMP inhibition. However, only Δ -tetrahydrocannabinol and BAY59,3074 demonstrated bias in the pERK-cAMP pathway comparison. Furthermore, all the agonists exhibited little preference between internalisation and pERK.
CONCLUSION AND IMPLICATIONS: This is the first joint kinetic assessment of biased agonism at a GPCR (e.g. CB receptor) under non-equilibrium conditions. Kinetic modelling is a natural method to handle time-varying data when traditional equilibria are not present and enables quantification of ligand bias.

References

  1. Neuroimmunomodulation. 2007;14(3-4):182-7 [PMID: 18073512]
  2. Br J Pharmacol. 2018 May;175(10):1654-1668 [PMID: 29457969]
  3. J Pharmacol Exp Ther. 2004 Aug;310(2):620-32 [PMID: 15140913]
  4. Br J Pharmacol. 2010 Jun;160(3):747-61 [PMID: 20590577]
  5. Nucleic Acids Res. 2018 Jan 4;46(D1):D1091-D1106 [PMID: 29149325]
  6. J Pharmacokinet Biopharm. 1995 Dec;23(6):651-72 [PMID: 8733951]
  7. J Pharmacokinet Pharmacodyn. 2003 Dec;30(6):387-404 [PMID: 15000421]
  8. Sci Rep. 2019 Feb 22;9(1):2557 [PMID: 30796256]
  9. Mol Pharmacol. 2015 Dec;88(6):1055-61 [PMID: 26138073]
  10. Br J Pharmacol. 2017 Aug;174(15):2545-2562 [PMID: 28516479]
  11. J Pharmacol Exp Ther. 2002 Sep;302(3):1158-67 [PMID: 12183676]
  12. Br J Pharmacol. 2019 Dec;176 Suppl 1:S21-S141 [PMID: 31710717]
  13. Mol Pharmacol. 2018 Sep;94(3):992-1006 [PMID: 29954837]
  14. Nat Rev Drug Discov. 2013 Mar;12(3):205-16 [PMID: 23411724]
  15. Sci Rep. 2017 Mar 14;7:44247 [PMID: 28290478]
  16. ACS Chem Neurosci. 2012 Mar 21;3(3):193-203 [PMID: 22860188]
  17. Br J Pharmacol. 2020 Aug;177(15):3449-3463 [PMID: 32293708]
  18. Nat Chem Biol. 2017 Aug 18;13(9):929-937 [PMID: 28820879]
  19. Br J Pharmacol. 2008 Jan;153(2):199-215 [PMID: 17828291]
  20. J Biol Chem. 2010 Nov 19;285(47):36736-44 [PMID: 20847054]
  21. J Biol Chem. 2007 Apr 6;282(14):10576-84 [PMID: 17283075]
  22. Br J Pharmacol. 2019 Jul;176(14):2593-2607 [PMID: 30945265]
  23. JAMA Psychiatry. 2016 Mar;73(3):292-7 [PMID: 26842658]
  24. Br J Pharmacol. 2018 Apr;175(7):987-993 [PMID: 29520785]
  25. Mol Pharmacol. 2007 Dec;72(6):1393-401 [PMID: 17901198]
  26. Neuroscience. 1997 Mar;77(2):299-318 [PMID: 9472392]
  27. CPT Pharmacometrics Syst Pharmacol. 2013 Jun 26;2:e50 [PMID: 23836189]
  28. Mol Pharmacol. 2018 Apr;93(4):266-269 [PMID: 29348268]
  29. Br J Pharmacol. 2013 Oct;170(4):893-907 [PMID: 23937487]
  30. Nat Commun. 2016 Feb 24;7:10842 [PMID: 26905976]
  31. J Theor Biol. 2018 Apr 7;442:44-65 [PMID: 29337260]
  32. Mol Pharmacol. 2015 Aug;88(2):368-79 [PMID: 26044547]
  33. Mol Pharmacol. 2014 Mar;85(3):492-509 [PMID: 24366668]
  34. Mol Pain. 2009 Oct 08;5:59 [PMID: 19814807]

Grants

  1. /University of Auckland
  2. /University of Otago
  3. /Faculty of Medical and Health Sciences, University of Auckland

MeSH Term

Cannabinoids
Dronabinol
Kinetics
Receptor, Cannabinoid, CB1
Receptor, Cannabinoid, CB2
Receptors, Cannabinoid
Signal Transduction

Chemicals

Cannabinoids
Receptor, Cannabinoid, CB1
Receptor, Cannabinoid, CB2
Receptors, Cannabinoid
Dronabinol

Word Cloud

Created with Highcharts 10.0.0receptorCBsignallingkineticbiaspathwaysinternalisationprofilesjointmodelANDagonismligandsequilibriummaytimecAMPinhibitionpERKusingWIN55212-22-arachidonylglycerolΔ-tetrahydrocannabinolBAY593074simultaneouslyligandagonistsmodellingBACKGROUNDPURPOSE:BiaseddescribesabilitydifferentiallyregulatemultiplecoupledsingleSignallingaffectedrapidagonist-inducedHenceconventionalusemodelsoptimalnumbersvaryadditioniishownon-monotonicEXPERIMENTALAPPROACH:DataavailablephosphorylationERKcannabinoid-1concentrationseriessixCP55940anandamidedevelopeddescribetime-dependentactivitiesthreeBasedinsightsfingerprintconstructedvisualisedKEYRESULTS:ablecaptureacrosssystemsimilarpatternreferencedisplayedtowardscomparedHoweverdemonstratedpERK-cAMPpathwaycomparisonFurthermoreexhibitedlittlepreferenceCONCLUSIONIMPLICATIONS:firstassessmentbiasedGPCRegnon-equilibriumconditionsKineticnaturalmethodhandletime-varyingdatatraditionalequilibriapresentenablesquantificationEvaluationcannabinoid

Similar Articles

Cited By