Impact of Měnglà Virus Proteins on Human and Bat Innate Immune Pathways.

Caroline G Williams, Joyce Sweeney Gibbons, Timothy R Keiffer, Priya Luthra, Megan R Edwards, Christopher F Basler
Author Information
  1. Caroline G Williams: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
  2. Joyce Sweeney Gibbons: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
  3. Timothy R Keiffer: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
  4. Priya Luthra: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
  5. Megan R Edwards: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA.
  6. Christopher F Basler: Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA cbasler@gsu.edu. ORCID

Abstract

Měnglà virus (MLAV), identified in bats, is a phylogenetically distinct member of the family Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40, and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon beta (IFN-β) promoter and interferon regulatory factor 3 (IRF3) phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN-induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or overexpressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFN-β promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFN-β promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus. EBOV and MARV, members of the family , are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to the severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1-binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune-suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.

Keywords

References

  1. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  2. J Virol. 2009 Sep;83(17):8993-7 [PMID: 19515768]
  3. Virology. 2017 Jan 15;501:147-165 [PMID: 27930961]
  4. J Clin Virol. 2015 Mar;64:111-9 [PMID: 25660265]
  5. Front Immunol. 2018 May 28;9:1135 [PMID: 29892288]
  6. Cell Host Microbe. 2014 Aug 13;16(2):187-200 [PMID: 25121748]
  7. J Virol. 2004 Mar;78(5):2382-93 [PMID: 14963134]
  8. J Virol. 2006 Jun;80(11):5156-67 [PMID: 16698996]
  9. Virology. 2015 Nov;485:145-52 [PMID: 26255028]
  10. J Virol. 2007 Apr;81(7):3554-62 [PMID: 17229682]
  11. J Virol. 2014 Nov;88(21):12500-10 [PMID: 25142601]
  12. PLoS Pathog. 2010 Jan 15;6(1):e1000721 [PMID: 20084112]
  13. J Virol. 2007 Dec;81(24):13469-77 [PMID: 17928350]
  14. PLoS One. 2012;7(9):e45479 [PMID: 23029039]
  15. J Virol. 2013 Sep;87(18):10385-8 [PMID: 23824825]
  16. J Virol. 2002 Feb;76(4):1825-38 [PMID: 11799178]
  17. Virology. 2001 Apr 25;283(1):1-6 [PMID: 11312656]
  18. Arch Virol. 2019 Apr;164(4):1233-1244 [PMID: 30663023]
  19. Curr Top Microbiol Immunol. 2017;411:293-322 [PMID: 28685291]
  20. J Virol. 2015 Aug;89(15):7567-83 [PMID: 25972536]
  21. J Virol. 2006 Jun;80(11):5168-78 [PMID: 16698997]
  22. Cell Rep. 2018 Jul 24;24(4):861-872.e6 [PMID: 30044983]
  23. Cell Rep. 2016 Feb 23;14(7):1632-1640 [PMID: 26876165]
  24. EMBO J. 1997 Dec 1;16(23):7067-77 [PMID: 9384585]
  25. Nat Rev Microbiol. 2015 Nov;13(11):663-76 [PMID: 26439085]
  26. PLoS Pathog. 2016 Dec 8;12(12):e1006031 [PMID: 27930745]
  27. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):314-9 [PMID: 20018665]
  28. J Virol. 2010 Jan;84(2):1169-75 [PMID: 19889762]
  29. Nat Struct Mol Biol. 2010 Feb;17(2):165-72 [PMID: 20081868]
  30. J Infect Dis. 2015 Oct 1;212 Suppl 2:S154-9 [PMID: 25926686]
  31. Viruses. 2015 Jun 25;7(7):3420-42 [PMID: 26120867]
  32. J Virol. 2006 Apr;80(8):3743-51 [PMID: 16571791]
  33. Cell Host Microbe. 2013 Jul 17;14(1):74-84 [PMID: 23870315]
  34. N Engl J Med. 2016 Aug 11;375(6):587-96 [PMID: 27509108]
  35. Cell Rep. 2014 Mar 27;6(6):1017-1025 [PMID: 24630991]
  36. J Virol. 2006 Jul;80(13):6430-40 [PMID: 16775331]
  37. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):411-6 [PMID: 19122151]
  38. Cell. 2010 Feb 5;140(3):397-408 [PMID: 20144762]
  39. J Virol. 2014 May;88(10):5859-63 [PMID: 24574400]
  40. Mol Cell. 2002 Aug;10(2):307-16 [PMID: 12191476]
  41. Virology. 2004 Oct 25;328(2):177-84 [PMID: 15464838]
  42. J Virol. 2008 Mar;82(6):2699-704 [PMID: 18199658]
  43. J Virol. 2016 Apr 29;90(10):5108-5118 [PMID: 26962215]
  44. J Virol. 2011 May;85(9):4309-17 [PMID: 21325424]
  45. J Virol. 2010 Mar;84(6):3004-15 [PMID: 20071589]
  46. Cell Host Microbe. 2011 Apr 21;9(4):299-309 [PMID: 21501829]
  47. PLoS One. 2017 Jun 21;12(6):e0178717 [PMID: 28636653]
  48. J Wildl Dis. 2015 Jan;51(1):113-24 [PMID: 25375951]
  49. Cell Rep. 2019 Sep 17;28(12):3032-3046.e6 [PMID: 31533029]
  50. Adv Pharmacol. 2012;63:43-79 [PMID: 22776639]
  51. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13871-6 [PMID: 11095724]
  52. Cell Rep. 2014 Mar 27;6(6):1026-1036 [PMID: 24630992]
  53. J Virol. 2013 Jul;87(13):7471-85 [PMID: 23616668]
  54. Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4275-80 [PMID: 22371572]
  55. Microbiol Aust. 2017 Mar;38(1):12-16 [PMID: 28603449]
  56. Nat Microbiol. 2019 Mar;4(3):390-395 [PMID: 30617348]
  57. EMBO J. 2002 Apr 2;21(7):1754-63 [PMID: 11927559]
  58. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94 [PMID: 11027311]
  59. J Infect Dis. 2018 Nov 22;218(suppl_5):S403-S408 [PMID: 30165526]
  60. J Mol Biol. 2016 Aug 28;428(17):3483-94 [PMID: 27497688]
  61. J Virol. 2007 Jan;81(1):182-92 [PMID: 17065211]
  62. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20661-6 [PMID: 23185024]
  63. Virology. 2017 Sep;509:23-34 [PMID: 28595092]
  64. PLoS Pathog. 2012 Sep;8(9):e1002916 [PMID: 23028316]
  65. J Infect Dis. 2015 Oct 1;212 Suppl 2:S219-25 [PMID: 25926685]
  66. Blood. 2010 Apr 15;115(15):3109-17 [PMID: 20130243]
  67. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16303-8 [PMID: 20805493]

Grants

  1. P01 AI120943/NIAID NIH HHS
  2. U19 AI109945/NIAID NIH HHS

MeSH Term

Animals
Chiroptera
Ebolavirus
Filoviridae
Filoviridae Infections
HEK293 Cells
Humans
Immunity, Innate
Interferon Regulatory Factor-3
Interferon-beta
Kelch-Like ECH-Associated Protein 1
Marburgvirus
NF-E2-Related Factor 2
STAT1 Transcription Factor
Viral Proteins
Viral Regulatory and Accessory Proteins

Chemicals

IRF3 protein, human
Interferon Regulatory Factor-3
KEAP1 protein, human
Kelch-Like ECH-Associated Protein 1
NF-E2-Related Factor 2
STAT1 Transcription Factor
STAT1 protein, human
VP35 protein, filovirus
Viral Proteins
Viral Regulatory and Accessory Proteins
Interferon-beta

Word Cloud

Created with Highcharts 10.0.0MLAVMARVEBOVVP24VP35VP40virusalsohosthumanactivationinterferoninnateproteinscellsIFN-βpromoterproteininhibittypegenebatinhibitionresponseresponsesMěnglàdistinctfamilyEbolaMarburgmodulateimmunevirus-inducedphosphorylationsignalingIFN-inducedexpressioneitherIFNabsenceKeap1activateantioxidantKeap1-bindingmotifsupportgenusvirusesdiseasefilovirusidentifiedbatsphylogeneticallymemberfilovirusesimmunitycomparedhomologspathwaymodulationbehavedlikeVP35sinhibitingbetaregulatoryfactor3IRF3interactedPACTengagedRIG-IinhibitsPKRdemonstratedblockedSTAT1tyrosineinducedoverexpressedJak1parallelinginhibitedpropertysharedJakkinaseinhibitorrecapitulateviralThereforeJak-STATinsufficientexplainbindkaryopherinαpropertiesdifferedfailedinteractelementreporterduefunctionalobservationscloserrelationshipconsistentbelongingmembershighlypathogeniczoonoticcauseseverehumansuseseveralmechanismslikelycontributeseveritydemonstratenewlydiscoveredsuppressesantiviralInhibitoryactivitiespossessedparallelsblocksHoweverwhereasactivatescellularinteractionlacksfailscytoprotectivedataindicatepossessesimmune-suppressingfunctionsfacilitateinfectionplacementdifferentImpactVirusProteinsHumanBatInnateImmunePathways

Similar Articles

Cited By