Identification of hub genes in papillary thyroid carcinoma: robust rank aggregation and weighted gene co-expression network analysis.

Yang Liu, Ting-Yu Chen, Zhi-Yan Yang, Wei Fang, Qian Wu, Chao Zhang
Author Information
  1. Yang Liu: Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
  2. Ting-Yu Chen: Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
  3. Zhi-Yan Yang: Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
  4. Wei Fang: Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China.
  5. Qian Wu: School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China. wuqian@xjtu.edu.cn.
  6. Chao Zhang: Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan, 442000, China. zhangchao0803@126.com.

Abstract

BACKGROUND: papillary thyroid carcinoma (PTC), which is the most common endocrine malignancy, has been steadily increasing worldwide in incidence over the years, while mechanisms underlying the pathogenesis and diagnostic for PTC are incomplete. The purpose of this study is to identify potential biomarkers for diagnosis of PTC, and provide new insights into pathogenesis of PTC.
METHODS: Based on weighted gene co-expression network analysis, Robust Rank Aggregation, functional annotation, GSEA and DNA methylation, were employed for investigating potential biomarkers for diagnosis of PTC.
RESULTS: Black and turquoise modules were identified in the gene co-expression network constructed by 1807 DEGs that from 6 eligible gene expression profiles of Gene Expression Omnibus database based on Robust Rank Aggregation and weighted gene co-expression network analysis. Hub genes were significantly down-regulated and the expression levels of the hub genes were different in different stages in hub gene verification. ROC curves indicated all hub genes had good diagnostic value for PTC (except for ABCA6 AUC = 89.5%, the 15 genes with AUC > 90%). Methylation analysis showed that hub gene verification ABCA6, ACACB, RMDN1 and TFPI were identified as differentially methylated genes, and the decreased expression level of these genes may relate to abnormal DNA methylation. Moreover, the expression levels of 8 top hub genes were correlated with tumor purity and tumor-infiltrating immune cells. These findings, including functional annotations and GSEA provide new insights into pathogenesis of PTC.
CONCLUSIONS: The hub genes and methylation of hub genes may as potential biomarkers provide new insights for diagnosis of PTC, and all these findings may be the direction to study the mechanisms underlying of PTC in the future.

Keywords

References

  1. Nucleic Acids Res. 2017 Jan 4;45(D1):D888-D895 [PMID: 27899673]
  2. Aging (Albany NY). 2019 Jul 15;11(13):4736-4756 [PMID: 31306099]
  3. Int J Clin Exp Pathol. 2014 Jul 15;7(8):4959-70 [PMID: 25197367]
  4. Front Oncol. 2020 Jan 10;9:1510 [PMID: 31998653]
  5. JAMA. 2017 Jul 25;318(4):390-391 [PMID: 28742904]
  6. Cancers (Basel). 2019 May 17;11(5): [PMID: 31109009]
  7. Int J Mol Sci. 2019 Aug 13;20(16): [PMID: 31412566]
  8. Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2803-8 [PMID: 17296934]
  9. Nucleic Acids Res. 2012 Jan;40(Database issue):D1030-5 [PMID: 22135302]
  10. Int J Mol Sci. 2019 May 24;20(10): [PMID: 31137683]
  11. Cell Prolif. 2019 May;52(3):e12564 [PMID: 30938030]
  12. Analyst. 2019 Oct 7;144(20):5912-5922 [PMID: 31436778]
  13. PLoS One. 2015 Dec 01;10(12):e0143688 [PMID: 26625260]
  14. Med Sci Monit. 2019 Feb 19;25:1342-1349 [PMID: 30779728]
  15. Nucleic Acids Res. 2017 Jul 3;45(W1):W98-W102 [PMID: 28407145]
  16. Cancer Res. 2017 Nov 1;77(21):e108-e110 [PMID: 29092952]
  17. Br J Cancer. 2015 May 12;112(10):1665-74 [PMID: 25965298]
  18. Front Immunol. 2019 Jun 07;10:1197 [PMID: 31231372]
  19. Biostatistics. 2003 Apr;4(2):249-64 [PMID: 12925520]
  20. J Cancer. 2020 Jan 1;11(4):932-939 [PMID: 31949496]
  21. Med Glas (Zenica). 2020 Feb 01;17(1): [PMID: 31994851]
  22. Cancer Immunol Immunother. 2018 Jul;67(7):1031-1040 [PMID: 29541787]
  23. Bioinformatics. 2012 Feb 15;28(4):573-80 [PMID: 22247279]
  24. BMC Res Notes. 2014 Mar 28;7:187 [PMID: 24673746]
  25. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  26. Clin Cancer Res. 2019 Jan 15;25(2):544-551 [PMID: 30093451]
  27. Oncol Lett. 2019 Feb;17(2):1695-1713 [PMID: 30675229]
  28. J Natl Cancer Inst. 2014 Jun 23;106(7): [PMID: 24957074]
  29. Meat Sci. 2016 Oct;120:100-106 [PMID: 27086067]
  30. Carcinogenesis. 2011 Apr;32(4):470-6 [PMID: 21239520]
  31. Genome Biol. 2003;4(5):P3 [PMID: 12734009]
  32. Med Sci Monit. 2019 Apr 01;25:2352-2360 [PMID: 30930461]
  33. J Cancer. 2018 Apr 30;9(11):1989-2002 [PMID: 29896284]
  34. J Endocrinol Invest. 2019 Apr;42(4):363-370 [PMID: 29992502]
  35. Oncogene. 2012 Oct 11;31(41):4490-8 [PMID: 22266856]
  36. Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):1983-93 [PMID: 16609007]
  37. Br J Cancer. 2012 Sep 4;107(6):994-1000 [PMID: 22828612]
  38. Exp Ther Med. 2019 Sep;18(3):1863-1869 [PMID: 31410148]
  39. Eur J Endocrinol. 2016 Nov;175(5):R203-17 [PMID: 27666535]
  40. Mol Biol Rep. 2019 Jun;46(3):2829-2840 [PMID: 30830589]
  41. BMC Bioinformatics. 2011 Mar 17;12:77 [PMID: 21414208]
  42. Pathology. 2019 Jan;51(1):55-61 [PMID: 30497805]
  43. Mol Aspects Med. 2015 Feb;41:1-115 [PMID: 25543955]
  44. Ther Adv Hematol. 2019 Aug 06;10:2040620719866081 [PMID: 31431820]
  45. Ann Clin Lab Sci. 2018 Jul;48(4):484-489 [PMID: 30143490]
  46. Nat Rev Cancer. 2012 Mar 15;12(4):298-306 [PMID: 22419253]
  47. Pathol Res Pract. 2017 Feb;213(2):83-88 [PMID: 28049580]
  48. Clin Pediatr Endocrinol. 2019;28(3):59-68 [PMID: 31384097]
  49. Biochem Biophys Res Commun. 2001 Aug 3;285(5):1295-301 [PMID: 11478798]
  50. Oncogene. 2005 Oct 6;24(44):6646-56 [PMID: 16007166]
  51. Cell J. 2016 Jul-Sep;18(2):159-64 [PMID: 27540520]
  52. Stat Appl Genet Mol Biol. 2005;4:Article17 [PMID: 16646834]
  53. Cancer Med. 2019 Oct;8(13):5995-6009 [PMID: 31448575]
  54. Exp Clin Endocrinol Diabetes. 1996;104 Suppl 4:16-9 [PMID: 8980993]
  55. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  56. Nucleic Acids Res. 2019 Jul 2;47(W1):W561-W565 [PMID: 31114869]
  57. Endocrine. 2019 Dec;66(3):573-584 [PMID: 31332712]
  58. Genome Biol. 2016 Aug 22;17(1):174 [PMID: 27549193]
  59. Br J Cancer. 2009 Nov 17;101(10):1782-91 [PMID: 19809427]
  60. Int J Cancer. 2012 Jul 15;131(2):E45-55 [PMID: 22020623]
  61. Med Oncol. 2016 Feb;33(2):11 [PMID: 26732474]
  62. Bioinformatics. 2015 Sep 1;31(17):2912-4 [PMID: 25964631]
  63. Bioinformatics. 2007 Dec 1;23(23):3251-3 [PMID: 17644558]
  64. J Comput Biol. 2018 Aug;25(8):907-916 [PMID: 29957033]
  65. Mol Med Rep. 2017 Nov;16(5):5863-5870 [PMID: 28849105]
  66. World J Gastrointest Oncol. 2019 Aug 15;11(8):622-633 [PMID: 31435463]
  67. Semin Cancer Biol. 2019 May 31;: [PMID: 31158464]
  68. Aging (Albany NY). 2019 Aug 24;11(16):6069-6088 [PMID: 31444970]

MeSH Term

DNA Methylation
Gene Expression Regulation, Neoplastic
Gene Regulatory Networks
Humans
Thyroid Cancer, Papillary
Thyroid Neoplasms
Transcriptome

Word Cloud

Created with Highcharts 10.0.0genesPTCgenehubco-expressionnetworkanalysisexpressionthyroidpathogenesispotentialbiomarkersdiagnosisprovidenewinsightsweightedRobustDNAmethylationmayPapillarycarcinomamechanismsunderlyingdiagnosticstudyRankAggregationfunctionalGSEAidentifiedlevelsdifferentverificationABCA6MethylationfindingsrankaggregationBACKGROUND:commonendocrinemalignancysteadilyincreasingworldwideincidenceyearsincompletepurposeidentifyMETHODS:BasedannotationemployedinvestigatingRESULTS:Blackturquoisemodulesconstructed1807DEGs6eligibleprofilesGeneExpressionOmnibusdatabasebasedHubsignificantlydown-regulatedstagesROCcurvesindicatedgoodvalueexceptAUC = 895%15AUC > 90%showedACACBRMDN1TFPIdifferentiallymethylateddecreasedlevelrelateabnormalMoreover8topcorrelatedtumorpuritytumor-infiltratingimmunecellsincludingannotationsCONCLUSIONS:directionfutureIdentificationpapillarycarcinoma:robustBiomarkersWeighted

Similar Articles

Cited By (14)