Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine.

Nazanin Amiryaghoubi, Marziyeh Fathi, Nader Noroozi Pesyan, Mohammad Samiei, Jaleh Barar, Yadollah Omidi
Author Information
  1. Nazanin Amiryaghoubi: Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
  2. Marziyeh Fathi: Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
  3. Nader Noroozi Pesyan: Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
  4. Mohammad Samiei: Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
  5. Jaleh Barar: Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
  6. Yadollah Omidi: Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. ORCID

Abstract

The loss of bone tissue is a striking challenge in orthopedic surgery. Tissue engineering using various advanced biofunctional materials is considered a promising approach for the regeneration and substitution of impaired bone tissues. Recently, polymeric supportive scaffolds and biomaterials have been used to rationally promote the generation of new bone tissues. To restore the bone tissue in this context, biofunctional polymeric materials with significant mechanical robustness together with embedded materials can act as a supportive matrix for cellular proliferation, adhesion, and osteogenic differentiation. The osteogenic regeneration to replace defective tissues demands greater calcium deposits, high alkaline phosphatase activity, and profound upregulation of osteocalcin as a late osteogenic marker. Ideally, the bioactive polymeric scaffolds (BPSs) utilized for bone tissue engineering should impose no detrimental impacts and function as a carrier for the controlled delivery and release of the loaded molecules necessary for the bone tissue regeneration. In this review, we provide comprehensive insights into different synthetic and natural polymers used for the regeneration of bone tissue and discuss various technologies applied for the engineering of BPSs and their physicomechanical properties and biological effects.

Keywords

References

  1. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater. 2019;8(7):1801048.
  2. Khan SN, Cammisa FP Jr., Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77-86.
  3. Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop. 2000;371:10-27.
  4. Enneking WF, Eady J, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects. J Bone Joint Surg Am. 1980;62(7):1039-1058.
  5. Boden S. Biology of lumbar spine fusion and bone graft materials. Lumbar Spine. 1996;21:2689-2697.
  6. Sim F, Frassica F. Use of allografts following resection of tumors of the musculoskeletal system. Instr Course Lect. 1993;42:405-413.
  7. Guo MZ, Xia ZS, Lin LB. The mechanical and biological properties of demineralised cortical bone allografts in animals. J Bone Joint Surg Br. 1991;73(5):791-794.
  8. Habibovic P, de Groot K. Osteoinductive biomaterials-properties and relevance in bone repair. J Tissue Eng Regen Med. 2007;1(1):25-32.
  9. Saravanan S, Leena R, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1354-1365.
  10. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways. Aging Cell. 2004;3(6):379-389.
  11. Soundarya SP, Sanjay V, Menon AH, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol. 2018;110:74-87.
  12. Khan S, Garg M, Chockalingam S, Gopinath P, Kundu PP. TiO2 doped chitosan/poly (vinyl alcohol) nanocomposite film with enhanced mechanical properties for application in bone tissue regeneration. Int J Biol Macromol. 2020;143:285-296.
  13. Tang Y-Q, Wang Q-Y, Ke Q-F, Zhang C-Q, Guan J-J, Guo Y-P. Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chem Eng J. 2020;387:124166.
  14. Seong Y-J, Song E-H, Park C, et al. Porous calcium phosphate-collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater Sci Eng C. 2020;109:110480.
  15. Wang S, Yang Y, Koons GL, et al. Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model. Mater Sci Eng C. 2020;106:110186.
  16. Yang C, Wu H, Li G. Bioactive ophiopogonin release form bioglass-collagen-phosphatidylserine scaffolds to enhance bone repair in vitro. Mater Lett. 2020;265:127436.
  17. Adzila S, Mustaffa NA, Kanasan N. Magnesium-doped calcium phosphate/sodium alginate biocomposite for bone implant application. J Aust Ceram Soc. 2020;56:109-115.
  18. Xu M, Qin M, Zhang X, et al. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering. J Biomater Sci Polym Ed. 2020;31:1-21.
  19. Zhou Y, Gu Z, Liu J, Huang K, Liu G, Wu J. Arginine based poly (ester amide)/hyaluronic acid hybrid hydrogels for bone tissue engineering. Carbohydr Polym. 2020;230:115640.
  20. Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration. Mater Sci Eng C. 2020;107:110195.
  21. Luetchford KA, Chaudhuri JB, Paul A. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Mater Sci Eng C. 2020;106:110116.
  22. Carlström IE, Rashad A, Campodoni E, et al. Cross-linked gelatin-nanocellulose scaffolds for bone tissue engineering. Mater Lett. 2020;264:127326.
  23. Balagangadharan K, Dhivya S, Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol. 2017;104:1372-1382.
  24. Kumar A, Zhang Y, Terracciano A, et al. Load-bearing biodegradable polycaprolactone-poly (lactic-co-glycolic acid)-beta tri-calcium phosphate scaffolds for bone tissue regeneration. Polym Advan Technol. 2019;30:1-9.
  25. Go EJ, Kang EY, Lee SK, et al. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg (OH) 2 to improve in vivo bone regeneration. Biomater Sci. 2020;8:937-948.
  26. Kung F-C, Kuo Y-L, Gunduz O, Lin C-C. Dual RGD-immobilized Poly (L-lactic acid) by atmospheric pressure plasma jet for bone tissue engineering. Colloids Surf B Biointerfaces. 2019;178:358-364.
  27. Mondal S, Nguyen TP, Hoang G, et al. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46(3):3443-3455.
  28. Bao C, Chong MS, Qin L, et al. Effects of tricalcium phosphate in polycaprolactone scaffold for mesenchymal stem cell-based bone tissue engineering. Mater Technol. 2019;34(6):361-367.
  29. Silva JC, Carvalho MS, Udangawa RN, et al. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. ‎J Biomed Mater Res B. 2020:1-14.
  30. Wibowo A, Vyas C, Cooper G, et al. 3D printing of polycaprolactone-polyaniline electroactive scaffolds for bone tissue engineering. Materials. 2020;13(3):512.
  31. Januariyasa IK, Ana ID, Yusuf Y. Nanofibrous poly (vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Mater Sci Eng C. 2020;107:110347.
  32. Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rew. 2018;38(6):2110-2136.
  33. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym. 2016;151:172-188.
  34. Fathi M, Alami-Milani M, Geranmayeh MH, Barar J, Erfan-Niya H, Omidi Y. Dual thermo-and pH-sensitive injectable hydrogels of chitosan/(poly (N-isopropylacrylamide-co-itaconic acid)) for doxorubicin delivery in breast cancer. Int J Biol Macromol. 2019;128:957-964.
  35. Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20(12):1133-1142.
  36. Zheng B, Mao C, Gu T, et al. Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. New J Chem. 2019;43(4):2002-2010.
  37. Pan Y, Chen J, Yu Y, Dai K, Wang J, Liu C. Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N, 6-O-sulfated chitosan in bone regeneration. Biomater Sci. 2018;6(2):431-439.
  38. Thein-Han W, Misra R. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(4):1182-1197.
  39. Frohbergh ME, Katsman A, Botta GP, et al. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33(36):9167-9178.
  40. Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158(2):353-361.
  41. Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2018;115:243-248.
  42. Sainitya R, Sriram M, Kalyanaraman V, et al. Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol. 2015;80:481-488.
  43. Pourjavadi A, Doroudian M, Ahadpour A, Azari S. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: a conductive scaffold for tissue engineering demands. Int J Biol Macromol. 2019;126:310-317.
  44. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-126.
  45. Luo Y, Lode A, Wu C, Chang J, Gelinsky M. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. ACS Appl Mater Interfaces. 2015;7(12):6541-6549.
  46. Luo Z, Yang Y, Deng Y, Sun Y, Yang H, Wei S. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids Surf B Biointerfaces. 2016;143:243-251.
  47. Matsuno T, Hashimoto Y, Adachi S, et al. Preparation of injectable 3D-formed β-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J. 2008;27(6):827-834.
  48. Luo Y, Wu C, Lode A, Gelinsky M. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication. 2012;5(1):015005.
  49. Nasri-Nasrabadi B, Kaynak A, Heidarian P, et al. Sodium alginate/magnesium oxide nanocomposite scaffolds for bone tissue engineering. Polym Adv Technol. 2018;29(9):2553-2559.
  50. Tohamy KM, Mabrouk M, Soliman IE, Beherei HH, Aboelnasr MA. Novel alginate/hydroxyethyl cellulose/hydroxyapatite composite scaffold for bone regeneration: In vitro cell viability and proliferation of human mesenchymal stem cells. Int J Biol Macromol. 2018;112:448-460.
  51. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1-2):1-22.
  52. Skopinska-Wisniewska J, Bajek A, Maj M, Sionkowska A. PEG-dialdehyde-the new cross-linking agent for collagen/elastin hydrogels. Polym Adv Technol. 2017;28(6):763-767.
  53. Paduano F, Marrelli M, White LJ, Shakesheff KM, Tatullo M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS One. 2016;11(2):e0148225.
  54. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000;6(4):351-359.
  55. Heo DN, Hospodiuk M, Ozbolat IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater. 2019;95:348-356.
  56. Baheiraei N, Nourani MR, Mortazavi SMJ, et al. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. J Biomed Mater Res A. 2018;106(1):73-85.
  57. He X, Fan X, Feng W, et al. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. Int J Biol Macromol. 2018;115:385-392.
  58. Xu C, Su P, Chen X, et al. Biocompatibility and osteogenesis of biomimetic bioglass-collagen-phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials. 2011;32(4):1051-1058.
  59. Gorustovich AA, Steimetz T, Cabrini RL, Porto López JM. Osteoconductivity of strontium-doped bioactive glass particles: a histomorphometric study in rats. J Biomed Mater Res A. 2010;92(1):232-237.
  60. Murphy CM, Haugh MG, O'Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461-466.
  61. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479-3500.
  62. George J, Sabapathi S. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl. 2015;8:45-54.
  63. Atila D, Keskin D, Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater Sci Eng C. 2016;69:1103-1115.
  64. Shaheen TI, Montaser A, Li S. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2019;121:814-821.
  65. Singh B, Panda N, Mund R, Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym. 2016;151:335-347.
  66. Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;86:434-442.
  67. Zeeshan R, Mutahir Z, Iqbal H, et al. Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydr Polym. 2018;193:9-18.
  68. Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484-3504.
  69. Xu T, Miszuk JM, Zhao Y, Sun H, Fong H. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Healthc Mater. 2015;4(15):2238-2246.
  70. Sattary M, Rafienia M, Kazemi M, Salehi H, Mahmoudzadeh M. Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Mater Sci Eng C. 2019;97:141-155.
  71. Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T, Azuma T. Promoting effect of 1, 25 (OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol. 2015;5(2):140201.
  72. Thadavirul N, Pavasant P, Supaphol P. Fabrication and evaluation of polycaprolactone-poly (hydroxybutyrate) or poly (3-hydroxybutyrate-co-3-hydroxyvalerate) dual-leached porous scaffolds for bone tissue engineering applications. Macromol Mater Eng. 2017;302(3):1600289.
  73. Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol. 2017;44(4):428-437.
  74. Tarafder S, Bose S. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl Mater Interfaces. 2014;6(13):9955-9965.
  75. Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi B, Dev VG. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. J Biomater Appl. 2014;29(1):46-58.
  76. Vandghanooni S, Eskandani M, Barar J, Omidi Y. AS1411 aptamer-decorated cisplatin-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine. 2018;13(21):2729-2758.
  77. Garlotta D. A literature review of poly (lactic acid). J Polym Environ. 2001;9(2):63-84.
  78. Zhou H, Lawrence JG, Bhaduri SB. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater. 2012;8(6):1999-2016.
  79. Kao C-T, Lin C-C, Chen Y-W, Yeh C-H, Fang H-Y, Shie M-Y. Poly (dopamine) coating of 3D printed poly (lactic acid) scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;56:165-173.
  80. Sinha S, Vohra PK, Bhattacharya R, Dutta S, Sinha S, Mukhopadhyay D. Dopamine regulates phosphorylation of VEGF receptor 2 by engaging Src-homology-2-domain-containing protein tyrosine phosphatase 2. J Cell Sci. 2009;122(18):3385-3392.
  81. Obata A, Hotta T, Wakita T, Ota Y, Kasuga T. Electrospun microfiber meshes of silicon-doped vaterite/poly (lactic acid) hybrid for guided bone regeneration. Acta Biomater. 2010;6(4):1248-1257.
  82. Chen K, Chen Y, Deng Q, et al. Strong and biocompatible poly (lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater Lett. 2018;229:114-117.
  83. Kim HW, Lee HH, Knowles J. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. J Biomed Mater Res A. 2006;79(3):643-649.
  84. Velioglu ZB, Pulat D, Demirbakan B, Ozcan B, Bayrak E, Erisken C. 3D-printed poly (lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Connect Tissue Res. 2018;60(3):274-282.
  85. Guduric V, Metz C, Siadous R, et al. Layer-by-layer bioassembly of cellularized polylactic acid porous membranes for bone tissue engineering. J Mater Sci: Mater Med. 2017;28(5):78.
  86. Shi H, Gan Q, Liu X, et al. Poly (glycerol sebacate)-modified polylactic acid scaffolds with improved hydrophilicity, mechanical strength and bioactivity for bone tissue regeneration. RSC Advances. 2015;5(97):79703-79714.
  87. Rasoulianboroujeni M, Yazdimamaghani M, Khoshkenar P, et al. From solvent-free microspheres to bioactive gradient scaffolds. Nanomedicine. 2017;13(3):1157-1169.
  88. Rasoulianboroujeni M, Fahimipour F, Shah P, et al. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C. 2019;96:105-113.
  89. Davarpanah Jazi R, Rafienia M, Salehi Rozve H, Karamian E, Sattary M. Fabrication and characterization of electrospun poly lactic-co-glycolic acid/zeolite nanocomposite scaffolds using bone tissue engineering. J Bioact Compat Polym. 2018;33(1):63-78.
  90. Encarnação IC, Sordi MB, Aragones Á, et al. Release of simvastatin from scaffolds of poly (lactic-co-glycolic) acid and biphasic ceramic designed for bone tissue regeneration. J Biomed Mater Res B. 2019;107(6):2152-2164.
  91. Ryu J-H, Kwon J-S, Kim K-M, et al. Synergistic effect of porous hydroxyapatite scaffolds combined with bioactive glass/poly (lactic-co-glycolic acid) composite fibers promotes osteogenic activity and bioactivity. ACS Omega. 2019;4(1):2302-2310.
  92. Lee D, Heo DN, Lee SJ, et al. Poly (lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl Surf Sci. 2018;432:300-307.
  93. Toppet S, Lemstra PJ, Van der Velden G. Nuclear magnetic resonance studies on sequence distributions in vinyl alcohol-vinyl acetate copolymers. Polymer. 1983;24(5):507-512.
  94. Thong C, Teo D, Ng C. Application of polyvinyl alcohol (PVA) in cement-based composite materials: a review of its engineering properties and microstructure behavior. Constr Build Mater. 2016;107:172-180.
  95. Zheng X, Song S, Yang J, Wang J, Wang L. 4-Formyl dibenzo-18-crown-6 grafted polyvinyl alcohol as anion exchange membranes for fuel cell. Eur Polym J. 2019;112:581-590.
  96. Shuai C, Mao Z, Lu H, Nie Y, Hu H, Peng S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication. 2013;5(1):1-8.
  97. Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354-362.
  98. Eshraghi S, Das S. Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 2010;6(7):2467-2476.
  99. Popov V, Evseev A, Antonov E, et al. Laser technology of individual implants and matrices for tissue engineering. J Opt Technol. 2007;74:636-640.
  100. Wu G, Zhou B, Bi Y, Zhao Y. Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent. 2008;100(1):56-60.
  101. Du H, Zheng Y, He W, Sun Y, Wang Y. A novel expandable porous composite based on acetalized polyvinyl alcohol and calcium sulfate used for injectable bone repair materials. Compos Sci Technol. 2018;157:10-20.
  102. Xia S-H, Teng S-H, Wang P. Synthesis of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration. Mater Lett. 2018;213:181-184.
  103. Dolkart O, Pritsch T, Sharfman Z, et al. The effects of lipophilic and hydrophilic statins on bone tissue mineralization in saos2 human bone cell line-in vitro comparative study. Pharm Anal Acta. 2015;6(5):1-4.
  104. Kalani MM, Nourmohammadi J, Negahdari B, Rahimi A, Sell SA. Electrospun core-sheath poly (vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. Mater Sci Eng C. 2019;99:129-139.
  105. Anjaneyulu U, Priyadarshini B, Grace AN, Vijayalakshmi U. Fabrication and characterization of Ag doped hydroxyapatite-polyvinyl alcohol composite nanofibers and its in vitro biological evaluations for bone tissue engineering applications. J Sol-Gel Sci Technol. 2017;81(3):750-761.
  106. Lewandrowski K-U, Gresser JD, Wise DL, White RL, Trantolo DJ. Osteoconductivity of an injectable and bioresorbable poly (propylene glycol-co-fumaric acid) bone cement. Biomaterials. 2000;21(3):293-298.
  107. Liu X, Miller AL II, Waletzki BE, Yaszemski MJ, Lu L. Novel biodegradable poly (propylene fumarate)-co-poly (l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications. RSC Adv. 2015;5(27):21301-21309.
  108. Fisher JP, Vehof JW, Dean D, et al. Soft and hard tissue response to photocrosslinked poly (propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res. 2002;59(3):547-556.
  109. Ma C, Ma Z, Yang F, Wang J, Liu C. Poly (propylene fumarate)/β-calcium phosphate composites for enhanced bone repair. Biomed Mater. 2019;14:1-25.
  110. Li J, Liu X, Park S, Miller AL, Terzic A, Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly (propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res A. 2019;107(3):631-642.
  111. Mishra R, Sefcik RS, Bishop TJ, et al. Growth factor dose tuning for bone progenitor cell proliferation and differentiation on resorbable poly (propylene fumarate) scaffolds. Tissue Eng Part C Methods. 2016;22(9):904-913.
  112. Shahabi S, Rezaei Y, Moztarzadeh F, Najafi F. In vitro degradation and bioactivity of poly (propylene fumarate)/bioactive glass sintered microsphere scaffolds for bone tissue engineering. Sci Eng Comp Mater. 2016;23(3):245-256.
  113. Farshid B, Lalwani G, Mohammadi MS, et al. Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. J Biomed Mater Res A. 2019;107:1143-1153.
  114. Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR. Nanoreinforcement of poly (propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules. 2004;5(5):1990-1998.
  115. Vogelson CT, Koide Y, Alemany LB, Barron AR. Inorganic-organic hybrid and composite resin materials using carboxylate-alumoxanes as functionalized cross-linking agents. Chem Mater. 2000;12(3):795-804.
  116. Vehof JW, Fisher JP, Dean D, et al. Bone formation in transforming growth factor β-1-coated porous poly (propylene fumarate) scaffolds. J Biomed Mater Res. 2002;60(2):241-251.
  117. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30-40.
  118. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319-327.
  119. Minnath MA, Purushothaman E. Blends and interpenetrating polymer networks based on polyurethane polymers with natural and synthetic rubbers. Polyurethane Polyme. 2017:17-44.
  120. Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng. 2014;42(2):323-337.
  121. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;49(2):188-193.
  122. Yoon DM, Fisher JP. Natural and synthetic polymeric scaffolds. Biomed Mater. 2009:415-442.
  123. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335-2346.
  124. Magnusson JP, Saeed AO, Fernández-Trillo F, Alexander C. Synthetic polymers for biopharmaceutical delivery. Polym Chem. 2011;2(1):48-59.
  125. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices. 2005;2(3):303-317.
  126. Maurus PB, Kaeding CC. Bioabsorbable implant material review. Oper Tech Sports Med. 2004;12(3):158-160.
  127. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735-1740.
  128. Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22(1):81-91.
  129. Binulal N, Natarajan A, Menon D, Bhaskaran V, Mony U, Nair SV. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed. 2014;25(4):325-340.
  130. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27(28):4894-4903.
  131. Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci. 2005;102(17):5953-5957.
  132. Ang SL, Shaharuddin B, Chuah J-A, Sudesh K. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Int J Biol Macromol. 2020;145:173-188.
  133. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546-554.
  134. Mishra R, Varshney R, Das N, Sircar D, Roy P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur Polym J. 2019;119:155-168.
  135. Thadavirul N, Pavasant P, Supaphol P. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J Biomed Mater Res A. 2014;102(10):3379-3392.
  136. Shaltooki M, Dini G, Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater Sci Eng C. 2019;105:110138.
  137. Kim HJ, Park IK, Kim JH, Cho CS, Kim MS. Gas foaming fabrication of porous biphasic calcium phosphate for bone regeneration. Tissue Eng Regen Med. 2012;9(2):63-68.
  138. Salonius E, Muhonen V, Lehto K, et al. Gas-foamed poly (lactide-co-glycolide) and poly (lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med. 2019;13(3):406-415.
  139. Nie L, Chen D, Suo J, et al. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids Surf B Biointerfaces. 2012;100:169-176.
  140. Sadeghinia A, Soltani S, Aghazadeh M, Khalilifard J, Davaran S. Design and fabrication of clinoptilolite-nanohydroxyapatite/chitosan-gelatin composite scaffold and evaluation of its effects on bone tissue engineering. J Biomed Mater Res A. 2020;108(2):221-233.
  141. Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. ‎J Biomed Mater Res B. 2014;102(6):1304-1315.
  142. Mao D, Li Q, Li D, Tan Y, Che Q. 3D porous poly (ε-caprolactone)/58S bioactive glass-sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Mater Des. 2018;160:1-8.
  143. Gayer C, Ritter J, Bullemer M, et al. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Mater Sci Eng C. 2019;101:660-673.
  144. Ziaee M, Mahmood A, Crane NB. Optimization of laser sintering for demineralized bone/polycaprolactone composite powder for bone tissue scaffold. J Manuf Mater Process. 2020;4(1):7.
  145. Bochicchio B, Barbaro K, De Bonis A, Rau JV, Pepe A. Electrospun poly (D, L-lactide)/gelatin/glass-ceramics tricomponent nanofibrous scaffold for bone tissue engineering. J Biomed Mater Res A. 2020;108:1064-1076.
  146. Perumal G, Sivakumar PM, Nandkumar AM, Doble M. Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater Sci Eng C. 2020;109:110527.
  147. Liang Y, Zheng X, Zhai W, Sun T. 3D PLLA/nano-hydroxyapatite scaffolds with hierarchical porous structure fabricated by low-temperature deposition manufacturing. J Wuhan Univ Technol-Mater Sci. 2012;27(2):265-269.
  148. Chen J-S, Tu S-L, Tsay R-Y. A morphological study of porous polylactide scaffolds prepared by thermally induced phase separation. J Taiwan Inst Chem Eng. 2010;41(2):229-238.
  149. He L, Zuo Q, Shi Y, Xue W. Microstructural characteristics and crystallization behaviors of poly (l-lactide) scaffolds by thermally induced phase separation. J Appl Polym Sci. 2014;131(4):1-8.
  150. Huang Y, Ren J, Chen C, Ren T, Zhou X. Preparation and properties of poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22(5):409-432.
  151. Ji G-L, Zhu L-P, Zhu B-K, Zhang C-F, Xu Y-Y. Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. J Membr Sci. 2008;319(1-2):264-270.
  152. Nie W, Gao Y, McCoul DJ, et al. Rapid mineralization of hierarchical poly (l-lactic acid)/poly (ε-caprolactone) nanofibrous scaffolds by electrodeposition for bone regeneration. Int J Nanomed. 2019;14:3929-3941.
  153. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Mater. 2018;3(3):278-314.
  154. Sola A, Bertacchini J, D'Avella D, et al. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater Sci Eng C. 2019;96:153-165.
  155. Rezwan K, Chen Q, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413-3431.
  156. Bak TY, Kook MS, Jung SC, Kim BH. Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering. J Nanomater. 2014;3:1-6.
  157. Torabinejad B, Mohammadi-Rovshandeh J, Davachi SM, Zamanian A. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2014;42:199-210.
  158. Haider A, Haider S, Kummara MR, et al. Advances in the Scaffolds fabrication techniques using biocompatible polymers and their biomedical application: a technical and statistical review. J Saudi Chem Soc. 2020;24(2):186-215.
  159. Whang K, Thomas C, Healy K, Nuber G. A novel method to fabricate bioabsorbable scaffolds. Polymer. 1995;36(4):837-842.
  160. Paula AC, Carvalho PH, Martins TM, et al. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions. Mater Sci Eng C. 2020;107:110301.
  161. Haider S, Al-Zeghayer Y, Ali FAA, et al. Highly aligned narrow diameter chitosan electrospun nanofibers. J Polym Res. 2013;20(4):105.
  162. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165-1188.
  163. Bae H-S, Haider A, Selim KK, Kang D-Y, Kim E-J, Kang I-K. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res. 2013;20(7):158.
  164. Zhang C-L, Yu S-H. Spraying functional fibres by electrospinning. Mater Horizons. 2016;3(4):266-269.
  165. Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C. 2019;97:325-335.
  166. Raval D, Kabariya J, Vimal Ramani TH. A review on electrospraying technique for encapsulation of nutraceuticals. IJCS. 2019;7(5):1183-1187.
  167. Bock N, Dargaville TR, Woodruff MA. Electrospraying of polymers with therapeutic molecules: state of the art. Prog Polym Sci. 2012;37(11):1510-1551.
  168. Gupta D, Venugopal J, Mitra S, Dev VG, Ramakrishna S. Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials. 2009;30(11):2085-2094.
  169. Gandhimathi C, Venugopal JR, Ramakrishna S, Srinivasan DK. Electrospun-electrosprayed hydroxyapatite nanostructured composites for bone tissue regeneration. J Appl Polym Sci. 2018;135(42):46756.
  170. Kumar A, Nune K, Murr L, Misra R. Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int Mater Rev. 2016;61(1):20-45.
  171. Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Barbeck M. Bioprinting of tissue engineering scaffolds. J Tissue Eng. 2018;9:1-16.
  172. Malda J, Visser J, Melchels FP, et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25(36):5011-5028.
  173. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J Healthcare Nutr Technol. 2006;1(9):910-917.
  174. Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448.
  175. Catros S, Fricain J-C, Guillotin B, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3(2):025001.
  176. Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J. 2014;9(10):1304-1311.
  177. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4(4):185-195.
  178. Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079-1104.
  179. Pati F, Jang J, Lee JW, Cho. Extrusion bioprinting. Essentials of 3D biofabrication and translation: Elsevier. Cambridge, MA: Academic Press; 2015:123-152.
  180. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C. 2007;27(3):469-478.
  181. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Func Biomater. 2018;9(1):17.
  182. Trachtenberg JE, Placone JK, Smith BT, Fisher JP, Mikos AG. Extrusion-based 3D printing of poly (propylene fumarate) scaffolds with hydroxyapatite gradients. J Biomater Sci Polym Ed. 2017;28(6):532-554.
  183. Shor L, Darling A, Starly B, Sun W, Guceri S. Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. IEEE. 2005:172-173.
  184. Kim SE, Shim KM, Jang K, Shim J-H, Kang SS. Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. In Vivo. 2018;32(1):63-70.
  185. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14(1):271.
  186. Guillotin B, Ali M, Ducom A, et al. Laser-assisted bioprinting for tissue engineering. Biofabrication. 2013:95-118.
  187. Catros S, Guillemot F, Nandakumar A, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods. 2012;18(1):62-70.
  188. Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater. 2018;79:37-59.
  189. Ma H, Jiang C, Zhai D, et al. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mater. 2016;26(8):1197-1208.
  190. Zhang Y, Zhai D, Xu M, Yao Q, Chang J, Wu C. 3D-printed bioceramic scaffolds with a Fe 3 O 4/graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J Mater Chem B. 2016;4(17):2874-2886.
  191. Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta Biomater. 2018;73:531-546.
  192. Cunniffe GM, Gonzalez-Fernandez T, Daly A, et al. Three-dimensional bioprinting of polycaprolactone reinforced gene activated bioinks for bone tissue engineering. Tissue Eng Part A. 2017;23(17-18):891-900.
  193. Pati F, Song T-H, Rijal G, Jang J, Kim SW, Cho D-W. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials. 2015;37:230-241.
  194. Celikkin N, Mastrogiacomo S, Walboomers XF, Swieszkowski W. Enhancing X-ray attenuation of 3D printed gelatin methacrylate (GelMA) hydrogels utilizing gold nanoparticles for bone tissue engineering applications. Polymers. 2019;11(2):367.
  195. Aldaadaa A, Owji N, Knowles J. Three-dimensional printing in maxillofacial surgery: hype versus reality. J Tissue Eng. 2018;9:1-5.
  196. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1-19.
  197. Katti D, Lakshmi S, Langer R, Laurencin C. Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Delivery Rev. 2002;54(7):933-961.
  198. Ye WP, Du FS, Jin WH, Yang JY, Xu Y. In vitro degradation of poly (caprolactone), poly (lactide) and their block copolymers: influence of composition, temperature and morphology. React Funct Polym. 1997;32(2):161-168.
  199. Colter KD, Shen M, Bell AT. Reduction of progesterone release rate through silicone membranes by plasma polymerization. Biomater Med Devices Artif Organs. 1977;5(1):13-24.
  200. Dong Z, Li Y, Zou Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci. 2009;255(12):6087-6091.
  201. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28(22):3338-3348.
  202. Liuyun J, Yubao L, Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009;16(1):65.
  203. Mistry AS, Pham QP, Schouten C, et al. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J Biomed Mater Res A. 2010;92(2):451-462.
  204. Park SH, Park DS, Shin JW, et al. Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J Mater Sci: Mater Med. 2012;23(11):2671-2678.
  205. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27(7):964-973.
  206. Hamadouche M, Sedel L. Ceramics in orthopaedics. J Bone Joint Surg Br. 2000;82(8):1095-1099.
  207. Kitsugi T, Yamamuro T, Nakamura T, Kokubo T. Bone bonding behavior of MgO- CaO- SiO2- P2O5- CaF2 glass (mother glass of A W-glass-ceramics). J Biomed Mater Res. 1989;23(6):631-648.
  208. Hamdy RC, Amako M, Beckman L, et al. Effects of osteogenic protein-1 on distraction osteogenesis in rabbits. Bone. 2003;33(2):248-255.
  209. Vaccaro AR, Whang PG, Patel T, et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J. 2008;8(3):457-465.
  210. Mont MA, Ragland PS, Biggins B, et al. Use of bone morphogenetic proteins for musculoskeletal applications: an overview. J Bone Joint Surg Am. 2004;86(suppl_2):41-55.

MeSH Term

Bone and Bones
Humans
Osteogenesis
Polymers
Regenerative Medicine
Tissue Scaffolds

Chemicals

Polymers

Word Cloud

Created with Highcharts 10.0.0bonetissuematerialspolymericengineeringregenerationscaffoldsosteogenicbiofunctionaltissuesvarioussupportiveusedbioactiveBPSsregenerativemedicinelossstrikingchallengeorthopedicsurgeryTissueusingadvancedconsideredpromisingapproachsubstitutionimpairedRecentlybiomaterialsrationallypromotegenerationnewrestorecontextsignificantmechanicalrobustnesstogetherembeddedcanactmatrixcellularproliferationadhesiondifferentiationreplacedefectivedemandsgreatercalciumdepositshighalkalinephosphataseactivityprofoundupregulationosteocalcinlatemarkerIdeallyutilizedimposedetrimentalimpactsfunctioncarriercontrolleddeliveryreleaseloadedmoleculesnecessaryreviewprovidecomprehensiveinsightsdifferentsyntheticnaturalpolymersdiscusstechnologiesappliedand theirphysicomechanicalpropertiesbiologicaleffectsBioactiverepair

Similar Articles

Cited By