A diffusion model analysis of sustained attention in children with attention deficit hyperactivity disorder.

Cynthia Huang-Pollock, Roger Ratcliff, Gail McKoon, Alexandra Roule, Tyler Warner, Jason Feldman, Shane Wise
Author Information
  1. Cynthia Huang-Pollock: Department of Psychology, The Pennsylvania State University.
  2. Roger Ratcliff: Department of Psychology, Ohio State University. ORCID
  3. Gail McKoon: Department of Psychology, Ohio State University.
  4. Alexandra Roule: Department of Psychology, The Pennsylvania State University.
  5. Tyler Warner: Department of Psychology, The Pennsylvania State University.
  6. Jason Feldman: Department of Psychology, The Pennsylvania State University. ORCID
  7. Shane Wise: Department of Psychology, The Pennsylvania State University.

Abstract

OBJECTIVE: Whether children with attention deficit hyperactivity disorder (ADHD) have deficits in sustained attention remains unresolved due to the ongoing use of cognitive paradigms that are not optimized for studying vigilance and the fact that relatively few studies report performance over time.
METHOD: In three independent samples of school-age children with (total = 128) and without ADHD (total = 59), we manipulated event rate, difficulty of discrimination, and use signal detection (SDT) and diffusion models (DM) to evaluate the cause of the vigilance decrement during a continuous performance task.
RESULTS: For both groups of children, a bias toward "no-go" over time (as indexed by the SDT parameter B″ and the DM parameter z/a) was responsible for generating the vigilance decrement. However, among children with ADHD, the rate at which information accumulated to make a no-go decision (vNoGo) also increased with time on task, representing a possible secondary mechanism that biases children against engagement. At all time points, children with ADHD demonstrated reduced sensitivity to discriminate targets from nontargets.
CONCLUSION: Children with ADHD are particularly sensitive to the cost of task engagement, but nonspecific slower drift rate may ultimately provide a better conceptualization of the cognitive atypicalities commonly observed in that group. Results are interpreted in the context of updated conceptualizations of sustained attention and vigilance. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

References

  1. Psychol Rev. 2014 Jan;121(1):66-95 [PMID: 24490789]
  2. Perception. 2015 Mar;44(3):289-300 [PMID: 26562253]
  3. Psychol Rev. 1985 Apr;92(2):212-25 [PMID: 3991839]
  4. JAMA. 2009 Sep 9;302(10):1084-91 [PMID: 19738093]
  5. Hum Factors. 1989 Feb;31(1):45-62 [PMID: 2707818]
  6. Exp Psychol. 2013;60(6):385-402 [PMID: 23895923]
  7. Brain Res Rev. 2006 Aug;51(2):145-60 [PMID: 16530842]
  8. Psychol Sci. 2019 Mar;30(3):396-404 [PMID: 30653407]
  9. Cortex. 2006 Aug;42(6):838-45 [PMID: 17131588]
  10. J Abnorm Child Psychol. 2017 Jan;45(1):57-68 [PMID: 27030470]
  11. Psychol Aging. 1991 Jun;6(2):155-69 [PMID: 1863385]
  12. Psychol Assess. 2018 Sep;30(9):1237-1248 [PMID: 29620381]
  13. Neuropsychology. 2012 Nov;26(6):684-94 [PMID: 23106115]
  14. J Exp Psychol Hum Percept Perform. 2014 Apr;40(2):870-88 [PMID: 24446719]
  15. J Learn Disabil. 2005 Mar-Apr;38(2):142-57 [PMID: 15813596]
  16. Science. 1979 Aug 31;205(4409):924-7 [PMID: 472714]
  17. Psychol Rev. 2018 Jul;125(4):453-485 [PMID: 29952620]
  18. J Exp Psychol Gen. 2007 Aug;136(3):389-413 [PMID: 17696690]
  19. Perspect Psychol Sci. 2014 Sep;9(5):497-524 [PMID: 25419227]
  20. Cogn Affect Behav Neurosci. 2015 Jun;15(2):395-415 [PMID: 25673005]
  21. Am Psychol. 2013 Feb-Mar;68(2):97-109 [PMID: 23088439]
  22. Child Dev. 2018 Jul;89(4):1283-1295 [PMID: 28397991]
  23. J Abnorm Psychol. 1997 Feb;106(1):3-14 [PMID: 9103713]
  24. Cogn Sci. 2014 Aug;38(6):1249-85 [PMID: 25079472]
  25. Clin Psychol Sci. 2017 Mar;5(2):195-211 [PMID: 28533945]
  26. J Neurosci. 2012 Feb 15;32(7):2335-43 [PMID: 22396408]
  27. Am J Psychiatry. 1994 Nov;151(11):1673-85 [PMID: 7943460]
  28. J Atten Disord. 2009 Mar;12(5):410-21 [PMID: 18400983]
  29. Biol Psychiatry. 2011 Jun 15;69(12):e55-68 [PMID: 20932513]
  30. J Exp Psychol Gen. 2011 Aug;140(3):464-87 [PMID: 21707207]
  31. Psychon Bull Rev. 2002 Sep;9(3):438-81 [PMID: 12412886]
  32. Decision (Wash D C ). 2018 Jan;5(1):42-62 [PMID: 29404378]
  33. Arch Gen Psychiatry. 1984 Dec;41(12):1178-82 [PMID: 6334503]
  34. Hum Factors. 1998 Mar;40(1):102-10 [PMID: 9579106]
  35. J Abnorm Psychol. 2018 Jul;127(5):529-539 [PMID: 30010369]
  36. J Exp Psychol Learn Mem Cogn. 2014 Mar;40(2):385-398 [PMID: 24245536]
  37. Intelligence. 2008;36(1):10-17 [PMID: 18584065]
  38. PLoS One. 2013 May 30;8(5):e64366 [PMID: 23737980]
  39. Psicothema. 2017 Nov;29(4):552-557 [PMID: 29048317]
  40. J Abnorm Child Psychol. 2013 Jul;41(5):837-50 [PMID: 23334775]
  41. J Abnorm Child Psychol. 2008 Aug;36(6):903-13 [PMID: 18288603]
  42. Psychol Rev. 2016 Jan;123(1):70-83 [PMID: 26524154]
  43. Psychol Rev. 2018 Oct;125(5):689-713 [PMID: 29963873]
  44. J Abnorm Psychol. 2012 May;121(2):360-71 [PMID: 22428793]
  45. Psychol Bull. 2013 Jul;139(4):870-900 [PMID: 23163491]
  46. Arch Clin Neuropsychol. 2002 Apr;17(3):235-72 [PMID: 14589726]
  47. Neural Comput. 2008 Apr;20(4):873-922 [PMID: 18085991]
  48. Behav Res Methods Instrum Comput. 1999 Feb;31(1):137-49 [PMID: 10495845]
  49. Neuropsychology. 2016 May;30(4):502-15 [PMID: 26866345]
  50. Neuropsychologia. 1997 Jun;35(6):747-58 [PMID: 9204482]
  51. Hum Factors. 2016 Mar;58(2):218-28 [PMID: 26608048]
  52. Clin Psychol Rev. 2005 Feb;25(2):183-213 [PMID: 15642646]
  53. J Abnorm Psychol. 2010 Feb;119(1):174-85 [PMID: 20141254]
  54. Trends Cogn Sci. 2016 Apr;20(4):260-281 [PMID: 26952739]
  55. Cogn Psychol. 2010 May;60(3):127-57 [PMID: 19962693]
  56. Brain Res Brain Res Rev. 2001 Apr;35(2):146-60 [PMID: 11336780]
  57. Psychon Bull Rev. 2007 Feb;14(1):3-22 [PMID: 17546727]
  58. Child Dev. 2012 Jan-Feb;83(1):367-81 [PMID: 22188547]
  59. Biometrics. 1946 Jun;2(3):47-53 [PMID: 21001024]
  60. J Child Psychol Psychiatry. 1996 Nov;37(8):971-87 [PMID: 9119944]

Grants

  1. R01 AG041176/NIA NIH HHS
  2. R01 AG057841/NIA NIH HHS
  3. R01 MH084947/NIMH NIH HHS
  4. R56 MH084947/NIMH NIH HHS

MeSH Term

Arousal
Attention
Attention Deficit Disorder with Hyperactivity
Child
Diagnostic and Statistical Manual of Mental Disorders
Diffusion
Discrimination, Psychological
Female
Humans
Male
Models, Psychological
Neuropsychological Tests
Reaction Time
Reproducibility of Results
Signal Detection, Psychological

Word Cloud

Created with Highcharts 10.0.0childrenattentionADHDvigilancetimesustainedratetaskdeficithyperactivitydisorderusecognitiveperformancetotal=SDTdiffusionDMdecrementparameterengagementOBJECTIVE:WhetherdeficitsremainsunresolveddueongoingparadigmsoptimizedstudyingfactrelativelystudiesreportMETHOD:threeindependentsamplesschool-age128without59manipulatedeventdifficultydiscriminationsignaldetectionmodelsevaluatecausecontinuousRESULTS:groupsbiastoward"no-go"indexedB″z/aresponsiblegeneratingHoweveramonginformationaccumulatedmakeno-godecisionvNoGoalsoincreasedrepresentingpossiblesecondarymechanismbiasespointsdemonstratedreducedsensitivitydiscriminatetargetsnontargetsCONCLUSION:ChildrenparticularlysensitivecostnonspecificslowerdriftmayultimatelyprovidebetterconceptualizationatypicalitiescommonlyobservedgroupResultsinterpretedcontextupdatedconceptualizationsPsycInfoDatabaseRecordc2020APArightsreservedmodelanalysis

Similar Articles

Cited By