Modeling the Growth and Interaction Between , spp., and in Minced Pork Samples.

Emilie Cauchie, Laurent Delhalle, Ghislain Baré, Assia Tahiri, Bernard Taminiau, Nicolas Korsak, Sophie Burteau, Papa Abdoulaye Fall, Frédéric Farnir, Georges Daube
Author Information
  1. Emilie Cauchie: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  2. Laurent Delhalle: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  3. Ghislain Baré: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  4. Assia Tahiri: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  5. Bernard Taminiau: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  6. Nicolas Korsak: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  7. Sophie Burteau: Quality Partner sa, Liège, Belgium.
  8. Papa Abdoulaye Fall: Quality Partner sa, Liège, Belgium.
  9. Frédéric Farnir: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
  10. Georges Daube: Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.

Abstract

The aim of this study was to obtain the growth parameters of specific spoilage micro-organisms previously isolated in minced pork (MP) samples and to develop a three-spoilage species interaction model under different storage conditions. Naturally contaminated samples were used to validate this approach by considering the effect of the food microbiota. Three groups of bacteria were inoculated on irradiated samples, in mono- and in co-culture experiments ( = 1152): , , and spp. ( and ). Samples were stored in two food packaging [food wrap and modified atmosphere packaging (CO 30%/O 70%)] at three isothermal conditions (4, 8, and 12°C). Analysis was carried out by using both 16S rRNA gene amplicon sequencing and classical microbiology in order to estimate bacterial counts during the storage period. Growth parameters were obtained by fitting primary (Baranyi) and secondary (square root) models. The food packaging shows the highest impact on bacterial growth rates, which in turn have the strongest influence on the shelf life of food products. Based on these results, a three-spoilage species interaction model was developed by using the modified Jameson-effect model and the Lotka Volterra (prey-predator) model. The modified Jameson-effect model showed slightly better performances, with 40-86% out of the observed counts falling into the Acceptable Simulation Zone (ASZ). It only concerns 14-48% for the prey-predator approach. These results can be explained by the fact that the dynamics of experimental and validation datasets seems to follow a Jameson behavior. On the other hand, the Lotka Volterra model is based on complex interaction factors, which are included in highly variable intervals. More datasets are probably needed to obtained reliable factors, and so better model fittings, especially for three- or more-spoilage species interaction models. Further studies are also needed to better understand the interaction of spoilage bacteria between them and in the presence of natural microbiota.

Keywords

References

J Food Prot. 2007 Nov;70(11):2485-97 [PMID: 18044425]
Food Res Int. 2018 Mar;105:952-961 [PMID: 29433294]
Food Microbiol. 2018 Apr;70:7-16 [PMID: 29173642]
Syst Appl Microbiol. 2018 Jan;41(1):44-50 [PMID: 29279139]
Cell. 2011 Feb 18;144(4):590-600 [PMID: 21335240]
Int J Syst Evol Microbiol. 2017 May;67(5):1613-1617 [PMID: 28005526]
Int J Food Microbiol. 1994 Nov;23(3-4):277-94 [PMID: 7873331]
J Theor Biol. 2013 Oct 21;335:88-96 [PMID: 23820038]
Food Microbiol. 2019 Oct;83:86-94 [PMID: 31202422]
Appl Environ Microbiol. 2016 Jun 13;82(13):3928-3939 [PMID: 27107120]
Int J Food Microbiol. 2000 May 25;56(1):53-70 [PMID: 10857925]
Int J Food Microbiol. 2016 Feb 2;218:86-95 [PMID: 26623935]
J Theor Biol. 2000 Jul 7;205(1):53-72 [PMID: 10860700]
Int J Syst Evol Microbiol. 2000 May;50 Pt 3:1143-1149 [PMID: 10843056]
J Theor Biol. 1999 Dec 7;201(3):159-70 [PMID: 10600360]
Nucleic Acids Res. 2015 Jan;43(Database issue):D593-8 [PMID: 25414355]
Meat Sci. 2010 Sep;86(1):66-79 [PMID: 20619799]
Meat Sci. 2017 Apr;126:55-62 [PMID: 28043049]
Meat Sci. 2016 Oct;120:118-132 [PMID: 27118166]
Meat Sci. 2018 Oct;144:149-158 [PMID: 29980332]
Food Microbiol. 2017 Aug;65:236-243 [PMID: 28400008]
Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):2073-2078 [PMID: 17766874]
J Appl Microbiol. 2015 Nov;119(5):1310-6 [PMID: 26152532]
Food Microbiol. 2011 Feb;28(1):84-93 [PMID: 21056779]
J Food Prot. 2016 Feb;79(2):220-9 [PMID: 26818982]
J Food Sci. 2019 Sep;84(9):2592-2602 [PMID: 31429485]
Int J Food Microbiol. 2018 Sep 2;280:78-86 [PMID: 29783046]
Food Microbiol. 2019 Feb;77:166-172 [PMID: 30297047]
Microb Pathog. 2019 Mar;128:171-177 [PMID: 30610901]
Meat Sci. 2008 Jan;78(1-2):77-89 [PMID: 22062098]
Food Res Int. 2014 Oct;64:626-633 [PMID: 30011697]
Food Microbiol. 2018 Oct;75:90-94 [PMID: 30056968]
Appl Environ Microbiol. 2014 Sep;80(17):5178-94 [PMID: 24928886]
Int J Food Microbiol. 2017 Apr 17;247:38-47 [PMID: 27184973]
J Appl Microbiol. 2010 Feb;108(2):510-20 [PMID: 19664065]
Int J Food Microbiol. 2019 Mar 16;293:44-52 [PMID: 30639999]
Food Microbiol. 2006 Sep;23(6):578-83 [PMID: 16943054]
Food Microbiol. 2015 Apr;46:1-14 [PMID: 25475260]
Int J Food Microbiol. 2019 Mar 16;293:102-113 [PMID: 30677559]
J Dairy Sci. 2018 Jun;101(6):4879-4890 [PMID: 29573795]
Food Microbiol. 2019 Jun;79:48-60 [PMID: 30621875]
Food Microbiol. 2016 Sep;58:43-55 [PMID: 27217358]
Appl Environ Microbiol. 2016 Jan 29;82(7):2167-2176 [PMID: 26826233]
Appl Environ Microbiol. 2004 Feb;70(2):1081-7 [PMID: 14766591]
Int J Food Microbiol. 2002 Mar;73(2-3):219-37 [PMID: 11934031]
Meat Sci. 2016 Jul;117:36-40 [PMID: 26943946]
Front Microbiol. 2020 Jan 21;10:3074 [PMID: 32038536]
Int J Food Microbiol. 2012 Jul 2;157(2):130-41 [PMID: 22682877]
Appl Environ Microbiol. 2016 Jun 13;82(13):4045-54 [PMID: 27129965]
Food Microbiol. 2017 Jun;64:39-46 [PMID: 28213033]
Int J Food Microbiol. 2004 Jan 15;90(2):171-9 [PMID: 14698098]
Nat Rev Microbiol. 2010 Jan;8(1):15-25 [PMID: 19946288]
J Bacteriol. 1983 Jun;154(3):1222-6 [PMID: 6853443]
Appl Environ Microbiol. 2005 Aug;71(8):4400-6 [PMID: 16085830]
Food Microbiol. 2013 Jun;34(2):284-95 [PMID: 23541195]
Int J Food Microbiol. 2019 May 16;297:72-84 [PMID: 30901694]
Meat Sci. 2002 Jul;61(3):257-65 [PMID: 22060848]
Int J Food Microbiol. 2017 Jan 2;240:24-31 [PMID: 27207811]
Int J Food Microbiol. 2016 Nov 21;237:98-108 [PMID: 27552347]
Food Microbiol. 2019 Feb;77:38-42 [PMID: 30297054]
Appl Environ Microbiol. 2008 Jan;74(1):172-81 [PMID: 17981942]
Food Microbiol. 2015 Jun;48:192-9 [PMID: 25791008]
Int J Food Microbiol. 2008 Oct 31;127(3):290-7 [PMID: 18775580]
Appl Microbiol Biotechnol. 2016 Apr;100(7):2939-51 [PMID: 26860942]
J Dairy Sci. 2016 Feb;99(2):1029-1038 [PMID: 26686719]
Food Microbiol. 2019 Feb;77:21-25 [PMID: 30297052]
J Hyg (Lond). 1962 Jun;60:193-207 [PMID: 14451045]
Int J Food Microbiol. 2009 Sep 15;134(3):230-6 [PMID: 19651454]
Food Res Int. 2019 Aug;122:506-516 [PMID: 31229106]
J Food Sci. 2016 Aug;81(8):M2006-14 [PMID: 27332555]
Meat Sci. 2012 Aug;91(4):486-9 [PMID: 22459497]
Food Microbiol. 2017 Feb;61:33-49 [PMID: 27697167]
Annu Rev Genet. 2009;43:197-222 [PMID: 19686078]
Meat Sci. 2015 Feb;100:145-49 [PMID: 25460118]
Food Microbiol. 2012 Sep;31(2):222-8 [PMID: 22608227]
J Food Prot. 2009 Feb;72(2):425-7 [PMID: 19350992]
J Food Prot. 2006 Jun;69(6):1312-21 [PMID: 16786851]
J Evol Biol. 2017 Feb;30(2):352-360 [PMID: 28000957]
Int J Food Microbiol. 2000 Oct 1;61(1):27-39 [PMID: 11028957]
Appl Environ Microbiol. 1995 Feb;61(2):610-6 [PMID: 16534932]
Int J Food Microbiol. 2013 Oct 15;167(2):244-60 [PMID: 24140806]
Food Microbiol. 2018 Apr;70:232-244 [PMID: 29173632]
Sensors (Basel). 2014 Mar 03;14(3):4167-76 [PMID: 24594611]
Int J Food Microbiol. 1999 Jan 12;46(1):57-70 [PMID: 10050685]
Meat Sci. 2015 Nov;109:66-74 [PMID: 25972087]
Int J Food Microbiol. 2019 Feb 2;290:27-35 [PMID: 30292676]
Food Microbiol. 2018 Sep;74:75-85 [PMID: 29706340]
Food Microbiol. 2015 Feb;45(Pt A):83-102 [PMID: 25481065]
Nat Rev Microbiol. 2016 Sep;14(9):589-600 [PMID: 27452230]
Food Microbiol. 2015 Oct;51:192-205 [PMID: 26187845]
Food Microbiol. 2018 Sep;74:40-49 [PMID: 29706336]
Int J Food Microbiol. 2013 Aug 1;165(3):332-8 [PMID: 23811038]
Appl Environ Microbiol. 2001 Sep;67(9):4064-9 [PMID: 11526006]
J Bacteriol. 1982 Jan;149(1):1-5 [PMID: 7054139]
Int J Food Microbiol. 2017 Apr 17;247:70-78 [PMID: 27751567]
Food Microbiol. 2017 Dec;68:89-96 [PMID: 28800830]
Food Microbiol. 2011 Jun;28(4):639-47 [PMID: 21511123]
ISME J. 2015 May;9(5):1105-18 [PMID: 25333463]
Food Res Int. 2018 Apr;106:1132-1139 [PMID: 29579908]
Int J Food Microbiol. 2007 Dec 15;120(3):287-95 [PMID: 17949841]

Word Cloud

Similar Articles

Cited By