Intra-striatal AAV2.retro administration leads to extensive retrograde transport in the rhesus macaque brain: implications for disease modeling and therapeutic development.

Alison R Weiss, William A Liguore, Jacqueline S Domire, Dana Button, Jodi L McBride
Author Information
  1. Alison R Weiss: Division of Neuroscience, Oregon National Primate Research Center, Beaverton, USA.
  2. William A Liguore: Division of Neuroscience, Oregon National Primate Research Center, Beaverton, USA.
  3. Jacqueline S Domire: Division of Neuroscience, Oregon National Primate Research Center, Beaverton, USA.
  4. Dana Button: Division of Neuroscience, Oregon National Primate Research Center, Beaverton, USA.
  5. Jodi L McBride: Division of Neuroscience, Oregon National Primate Research Center, Beaverton, USA. mcbridej@ohsu.edu.

Abstract

Recently, AAV2.retro, a new capsid variant capable of efficient retrograde transport in brain, was generated in mice using a directed evolution approach. However, it remains unclear to what degree transport will be recapitulated in the substantially larger and more complex nonhuman primate (NHP) brain. Here, we compared the biodistribution of AAV2.retro with its parent serotype, AAV2, in adult macaques following delivery into the caudate and putamen, brain regions which comprise the striatum. While AAV2 transduction was primarily limited to the injected brain regions, AAV2.retro transduced cells in the striatum and in dozens of cortical and subcortical regions with known striatal afferents. We then evaluated the capability of AAV2.retro to deliver disease-related gene cargo to biologically-relevant NHP brain circuits by packaging a fragment of human mutant HTT, the causative gene mutation in Huntington's disease. Following intra-striatal delivery, pathological mHTT-positive protein aggregates were distributed widely among cognitive, motor, and limbic cortico-basal ganglia circuits. Together, these studies demonstrate strong retrograde transport of AAV2.retro in NHP brain, highlight its utility in developing novel NHP models of brain disease and suggest its potential for querying circuit function and delivering therapeutic genes in the brain, particularly where treating dysfunctional circuits, versus single brain regions, is warranted.

References

  1. Samulski, R. J. & Muzyczka, N. AAV-Mediated Gene Therapy for Research and Therapeutic Purposes. Annu. Rev. Virol. 1, 427–451 (2014). [PMID: 26958729]
  2. Aschauer, D. F., Kreuz, S. & Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8, e76310 (2013). [PMID: 24086725]
  3. Atchison, R. W., Casto, B. C. & Hammon, W. M. Adenovirus-Associated Defective Virus Particles. Science 149, 754–756 (1965). [PMID: 14325163]
  4. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006). [PMID: 16824801]
  5. Lisowski, L., Tay, S. S. & Alexander, I. E. Adeno-associated virus serotypes for gene therapeutics. Curr. Opin. Pharmacol. 24, 59–67 (2015). [PMID: 26291407]
  6. Srivastava, A. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21, 75–80 (2016). [PMID: 27596608]
  7. Gao, G. et al. Clades of Adeno-associated viruses are widely disseminated in human tissues. J. Virol. 78, 6381–6388 (2004). [PMID: 15163731]
  8. Gao, G. P. et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl Acad. Sci. U S Am. 99, 11854–11859 (2002). [DOI: 10.1073/pnas.182412299]
  9. Grimm, D. et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood 102, 2412–2419 (2003). [PMID: 12791653]
  10. Hocquemiller, M., Giersch, L., Audrain, M., Parker, S. & Cartier, N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum. Gene Ther. 27, 478–496 (2016). [PMID: 27267688]
  11. Dodiya, H. B. et al. Differential transduction following basal ganglia administration of distinct pseudotyped AAV capsid serotypes in nonhuman primates. Mol.Ther. 18, 579–587 (2010). [PMID: 19773746]
  12. Castle, M. J., Turunen, H. T., Vandenberghe, L. H. & Wolfe, J. H. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Methods Mol. Biol. 1382, 133–149 (2016). [PMID: 26611584]
  13. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004). [PMID: 15294177]
  14. Weleber, R. G. et al. Results at 2 years after Gene Therapy for RPE-65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood-Onset Retinal Dystrophy. Opthalmology. 123, 1606–20 (2016). [DOI: 10.1016/j.ophtha.2016.03.003]
  15. Rodrigues, G. A. et al. Pharmaceutical Development of AAV-Based Gene Therapy Products for the Eye. Pharm. Res. 36, 29 (2018). [PMID: 30591984]
  16. Mendell, J. R. et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 377, 1713–1722 (2017). [PMID: 29091557]
  17. Gerstein, H., Lindstrom, M.J. & Burger, C. Gene delivery of Homer1c rescues spatial learning in a rodent model of cognitive aging. Neurobiol Aging 34, 1963-1970 (2013).
  18. Rex, C. S. et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 67, 603–617 (2010). [PMID: 20797537]
  19. Dossat, A. M. et al. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats. Neuroscience 340, 243–257 (2017). [PMID: 27816701]
  20. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011). [PMID: 21692661]
  21. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015). [PMID: 25292433]
  22. Kirik, D. & Bjorklund, A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci. 26, 386–392 (2003). [PMID: 12850435]
  23. Eslamboli, A. et al. Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130, 799–815 (2007). [PMID: 17303591]
  24. Thakur, P. et al. Modeling Parkinson’s disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain. Proc. Natl Acad. Sci. USA 114, E8284–E8293 (2017). [PMID: 28900002]
  25. Franich, N. R. et al. AAV vector-mediated RNAi of mutant huntingtin expression is neuroprotective in a novel genetic rat model of Huntington’s disease. Mol. Ther. 16, 947–956 (2008). [PMID: 18388917]
  26. Jang, M., Lee, S. E. & Cho, I. H. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington’s Disease. Front. Cell Neurosci. 12, 157 (2018). [PMID: 29946240]
  27. Lawlor, P. A. et al. Novel rat Alzheimer’s disease models based on AAV-mediated gene transfer to selectively increase hippocampal Abeta levels. Mol. Neurodegener. 2, 11 (2007). [PMID: 17559680]
  28. Ittner, L. M., Klugmann, M. & Ke, Y. D. Adeno-associated virus-based Alzheimer’s disease mouse models and potential new therapeutic avenues. Br. J. Pharmacol. 176, 3649–3665 (2019). [PMID: 30817847]
  29. Fiandaca, M. S., Forsayeth, J. R., Dickinson, P. J. & Bankiewicz, K. S. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics. 5, 123–127 (2008). [PMID: 18164491]
  30. Varenika, V. et al. Controlled dissemination of AAV vectors in the primate brain. Prog.Brain Res. 175, 163–172 (2009). [PMID: 19660655]
  31. Richardson, R. M. et al. Novel Platform for MRI-Guided Convection-Enhanced Delivery of Therapeutics: Preclinical Validation in Nonhuman Primate Brain. Stereotact.Funct.Neurosurg. 89, 141–151 (2011). [PMID: 21494065]
  32. Tervo, D. G. et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 92, 372–382 (2016). [PMID: 27720486]
  33. Miller, S. M., Marcotulli, D., Shen, A. & Zweifel, L. S. Divergent medial amygdala projections regulate approach-avoidance conflict behavior. Nat. Neurosci. 22, 565–575 (2019). [PMID: 30804529]
  34. Birdsong, W.T. et al. Synapse-specific opioid modulation of thalamo-cortico-striatal circuits. Elife 8 (2019).
  35. Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D. & Lee, A. K. Inhibitory Control of Prefrontal Cortex by the Claustrum. Neuron 99, 1029–1039 e1024 (2018). [PMID: 30122374]
  36. Lilley, B. N. et al. Genetic access to neurons in the accessory optic system reveals a role for Sema6A in midbrain circuitry mediating motion perception. J. Comp. Neurol. 527, 282–296 (2019). [PMID: 30076594]
  37. Ren, J. et al. Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell 175, 472–487 e420 (2018). [PMID: 30146164]
  38. Balmer, T.S. & Trussell, L.O. Selective targeting of unipolar brush cell subtypes by cerebellar mossy fibers. Elife 8 (2019).
  39. Vonsattel, J. P. et al. Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985). [PMID: 2932539]
  40. Novak, M. J. et al. Basal ganglia-cortical structural connectivity in Huntington’s disease. Hum. Brain Mapp. 36, 1728–1740 (2015). [PMID: 25640796]
  41. Gargouri, F. et al. Longitudinal changes in functional connectivity of cortico-basal ganglia networks in manifests and premanifest huntington’s disease. Hum. Brain Mapp. 37, 4112–4128 (2016). [PMID: 27400836]
  42. Saleem, K.S. & Logothetis, N. A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates, (Academic, London; Burlington, MA, 2007).
  43. Szabo, J. Organization of the ascending striatal afferents in monkeys. J. Comp. Neurol. 189, 307–321 (1980). [PMID: 6767756]
  44. Shipp, S. The functional logic of corticostriatal connections. Brain Struct. Funct. 222, 669–706 (2017). [PMID: 27412682]
  45. Madan, C. R. Creating 3D visualizations of MRI data: A brief guide. F1000Res 4, 466 (2015). [PMID: 26594340]
  46. Hadaczek, P. et al. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: implications for Huntington’s disease. Mol. Ther. Methods Clin. Dev. 3, 16037 (2016). [PMID: 27408903]
  47. Hadaczek, P. et al. Transduction of nonhuman primate brain with adeno-associated virus serotype 1: vector trafficking and immune response. Hum. Gene Ther. 20, 225–237 (2009). [PMID: 19292604]
  48. Salegio, E. A. et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 20, 348–352 (2013). [PMID: 22418061]
  49. Naidoo, J. et al. Extensive Transduction and Enhanced Spread of a Modified AAV2 Capsid in the Non-human Primate CNS. Mol. Ther. 26, 2418–2430 (2018). [PMID: 30057240]
  50. Sullivan, J. A. et al. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther. 25, 205–219 (2018). [PMID: 29785047]
  51. Foust, K. D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009). [PMID: 19098898]
  52. Deverman, B. E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016). [PMID: 26829320]
  53. Liguore, W. A. et al. AAV-PHP.B Administration Results in a Differential Pattern of CNS Biodistribution in Non-human Primates Compared with Mice. Mol. Ther. 27, 2018–2037 (2019). [PMID: 31420242]
  54. Minkova, L. et al. Large-scale brain network abnormalities in Huntington’s disease revealed by structural covariance. Hum. Brain Mapp. 37, 67–80 (2016). [PMID: 26453902]
  55. Aggleton, J. P., Pralus, A., Nelson, A. J. & Hornberger, M. Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 139, 1877–1890 (2016). [PMID: 27190025]
  56. Bakkour, A., Morris, J. C., Wolk, D. A. & Dickerson, B. C. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage 76, 332–344 (2013). [PMID: 23507382]
  57. Dufour, B. D., Smith, C. A., Clark, R. L., Walker, T. R. & McBride, J. L. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington’s disease mice. Mol. Ther. 22, 797–810 (2014). [PMID: 24390280]
  58. Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006). [DOI: 10.1016/j.neuroimage.2006.01.015]

Grants

  1. F32 NS110149/NINDS NIH HHS
  2. P51 OD011092/NIH HHS
  3. R01 NS099136/NINDS NIH HHS
  4. S10 OD025002/NIH HHS

MeSH Term

Animals
Antibodies, Neutralizing
Biological Transport
Brain
Dependovirus
Disease Models, Animal
Female
Humans
Macaca mulatta
Male
Neurodegenerative Diseases
Parvovirinae

Chemicals

Antibodies, Neutralizing

Word Cloud

Created with Highcharts 10.0.0brainAAV2retrotransportNHPregionsretrogradecircuitsdiseasedeliverystriatumgenetherapeuticRecentlynewcapsidvariantcapableefficientgeneratedmiceusingdirectedevolutionapproachHoweverremainsuncleardegreewillrecapitulatedsubstantiallylargercomplexnonhumanprimatecomparedbiodistributionparentserotypeadultmacaquesfollowingcaudateputamencomprisetransductionprimarilylimitedinjectedtransducedcellsdozenscorticalsubcorticalknownstriatalafferentsevaluatedcapabilitydeliverdisease-relatedcargobiologically-relevantpackagingfragmenthumanmutantHTTcausativemutationHuntington'sFollowingintra-striatalpathologicalmHTT-positiveproteinaggregatesdistributedwidelyamongcognitivemotorlimbiccortico-basalgangliaTogetherstudiesdemonstratestronghighlightutilitydevelopingnovelmodelssuggestpotentialqueryingcircuitfunctiondeliveringgenesparticularlytreatingdysfunctionalversussinglewarrantedIntra-striataladministrationleadsextensiverhesusmacaquebrain:implicationsmodelingdevelopment

Similar Articles

Cited By (38)