Bayesian joint modelling of longitudinal and time to event data: a methodological review.

Maha Alsefri, Maria Sudell, Marta García-Fiñana, Ruwanthi Kolamunnage-Dona
Author Information
  1. Maha Alsefri: Department of Health Data Science, Institute of Population Health, University of Liverpool, L69 3GL, Liverpool, UK. m.alsefri@liverpool.ac.uk.
  2. Maria Sudell: Department of Health Data Science, Institute of Population Health, University of Liverpool, L69 3GL, Liverpool, UK.
  3. Marta García-Fiñana: Department of Health Data Science, Institute of Population Health, University of Liverpool, L69 3GL, Liverpool, UK.
  4. Ruwanthi Kolamunnage-Dona: Department of Health Data Science, Institute of Population Health, University of Liverpool, L69 3GL, Liverpool, UK.

Abstract

BACKGROUND: In clinical research, there is an increasing interest in joint modelling of longitudinal and time-to-event data, since it reduces bias in parameter estimation and increases the efficiency of statistical inference. Inference and prediction from frequentist approaches of joint models have been extensively reviewed, and due to the recent popularity of data-driven Bayesian approaches, a review on current Bayesian estimation of joint model is useful to draw recommendations for future researches.
METHODS: We have undertaken a comprehensive review on Bayesian univariate and multivariate joint models. We focused on type of outcomes, model assumptions, association structure, estimation algorithm, dynamic prediction and software implementation.
RESULTS: A total of 89 articles have been identified, consisting of 75 methodological and 14 applied articles. The most common approach to model the longitudinal and time-to-event outcomes jointly included linear mixed effect models with proportional hazards. A random effect association structure was generally used for linking the two sub-models. Markov Chain Monte Carlo (MCMC) algorithms were commonly used (93% articles) to estimate the model parameters. Only six articles were primarily focused on dynamic predictions for longitudinal or event-time outcomes.
CONCLUSION: Methodologies for a wide variety of data types have been proposed; however the research is limited if the association between the two outcomes changes over time, and there is also lack of methods to determine the association structure in the absence of clinical background knowledge. Joint modelling has been proved to be beneficial in producing more accurate dynamic prediction; however, there is a lack of sufficient tools to validate the prediction.

Keywords

References

  1. PLoS One. 2017 Aug 16;12(8):e0182873 [PMID: 28813458]
  2. Stat Med. 2018 Dec 30;37(30):4771-4788 [PMID: 30306611]
  3. Lifetime Data Anal. 2020 Apr;26(2):339-368 [PMID: 31140028]
  4. Stat Methods Med Res. 2018 Apr;27(4):1258-1270 [PMID: 27460540]
  5. Ann Appl Stat. 2017 Sep;11(3):1787-1809 [PMID: 29081873]
  6. Stat Med. 2011 Oct 30;30(24):2930-46 [PMID: 21805486]
  7. Stat Methods Appt. 2014 Mar;23(1):95-121 [PMID: 24611039]
  8. Biometrics. 2018 Jun;74(2):685-693 [PMID: 29092100]
  9. J Biopharm Stat. 2015;25(4):670-94 [PMID: 24905593]
  10. Biom J. 2017 Jan;59(1):57-78 [PMID: 27667731]
  11. Stat Methods Med Res. 2020 Nov;29(11):3294-3307 [PMID: 32438854]
  12. Comput Stat Data Anal. 2019 Jan;129:14-29 [PMID: 30559575]
  13. Commun Stat Simul Comput. 2018;47(5):1420-1438 [PMID: 30174369]
  14. Stat Med. 2016 Sep 10;35(20):3583-94 [PMID: 27027882]
  15. Stat Methods Med Res. 2019 Aug;28(8):2524-2537 [PMID: 29962288]
  16. Stat Med. 2014 Aug 15;33(18):3167-78 [PMID: 24676841]
  17. Stat Med. 1996 Aug 15;15(15):1663-85 [PMID: 8858789]
  18. Stat Methods Appt. 2011 Mar 1;20(1):83-100 [PMID: 21339862]
  19. J Biopharm Stat. 2014;24(4):834-55 [PMID: 24697192]
  20. Int J Plant Genomics. 2012;2012:680634 [PMID: 22685454]
  21. J Biopharm Stat. 2017;27(6):1009-1027 [PMID: 28272995]
  22. Biometrics. 2013 Mar;69(1):206-13 [PMID: 23379600]
  23. Stat Med. 2011 May 30;30(12):1366-80 [PMID: 21337596]
  24. Stat Interface. 2010 Summer;3(2):185-195 [PMID: 21892381]
  25. Stat Methods Med Res. 2016 Oct;25(5):2180-2192 [PMID: 24448442]
  26. Lifetime Data Anal. 2018 Oct;24(4):699-718 [PMID: 29080062]
  27. Stat Med. 2011 Aug 15;30(18):2310-25 [PMID: 21544846]
  28. Stat Med. 2015 Sep 10;34(20):2820-43 [PMID: 25924891]
  29. J Clin Oncol. 2010 Jun 1;28(16):2796-801 [PMID: 20439643]
  30. J Biopharm Stat. 2018;28(3):385-401 [PMID: 28422610]
  31. Exp Aging Res. 2015;41(3):221-39 [PMID: 25978444]
  32. Ann Hum Genet. 1975 Oct;39(2):173-88 [PMID: 1052764]
  33. Stat Med. 2016 Dec 10;35(28):5267-5282 [PMID: 27523800]
  34. Biometrics. 2003 Jun;59(2):221-8 [PMID: 12926706]
  35. Stat Methods Med Res. 2016 Aug;25(4):1346-58 [PMID: 23592717]
  36. Biom J. 2017 Nov;59(6):1184-1203 [PMID: 28799274]
  37. Stat Med. 2014 Nov 20;33(26):4560-76 [PMID: 24947785]
  38. Biom J. 2017 Nov;59(6):1144-1165 [PMID: 28796339]
  39. Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3392-3403 [PMID: 30306833]
  40. Biometrics. 2010 Mar;66(1):294-300 [PMID: 19432791]
  41. Stat Med. 2015 Feb 28;34(5):824-43 [PMID: 25404574]
  42. Stat Methods Med Res. 2019 Feb;28(2):327-342 [PMID: 28750578]
  43. BMC Med Res Methodol. 2018 Nov 16;18(1):138 [PMID: 30445915]
  44. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  45. J Appl Stat. 2014 Jan 1;41(10):2192-2205 [PMID: 25214700]
  46. Biometrics. 2006 Jun;62(2):432-45 [PMID: 16918907]
  47. Stat Med. 2016 Dec 30;35(30):5666-5685 [PMID: 27592848]
  48. Stat Methods Med Res. 2014 Feb;23(1):74-90 [PMID: 22517270]
  49. Stat Med. 2016 Aug 30;35(19):3368-84 [PMID: 26990773]
  50. Emerg Themes Epidemiol. 2017 Nov 14;14:13 [PMID: 29201130]
  51. Acta Diabetol. 2017 Nov;54(11):1009-1017 [PMID: 28856522]
  52. Stat Med. 2011 Mar 15;30(6):611-26 [PMID: 21337357]
  53. Ann Appl Stat. 2011;5(1):400-426 [PMID: 27134691]
  54. Stat Med. 2017 Nov 20;36(26):4214-4229 [PMID: 28795414]
  55. Biometrics. 2012 Sep;68(3):954-64 [PMID: 22385010]
  56. Kidney Res Clin Pract. 2017 Jun;36(2):182-191 [PMID: 28680826]
  57. Biom J. 2011 Sep;53(5):750-63 [PMID: 21834127]
  58. J Biopharm Stat. 2011 Sep;21(5):971-91 [PMID: 21830926]
  59. Biom J. 2013 Nov;55(6):844-65 [PMID: 23907983]
  60. Stat Methods Med Res. 2017 Oct;26(5):2407-2423 [PMID: 26265770]
  61. J Biopharm Stat. 2016;26(3):519-33 [PMID: 26097990]
  62. Biometrics. 2003 Sep;59(3):686-93 [PMID: 14601770]
  63. JP J Biostat. 2011 May 1;5(2):73-96 [PMID: 22180704]
  64. J Biopharm Stat. 2019;29(6):971-989 [PMID: 29252088]
  65. Stat Methods Med Res. 2017 Aug;26(4):1787-1801 [PMID: 26059114]
  66. Stat Med. 2009 May 15;28(11):1601-19 [PMID: 19308919]
  67. Lifetime Data Anal. 2011 Jan;17(1):80-100 [PMID: 20549344]
  68. Biostatistics. 2013 Jul;14(3):477-90 [PMID: 23376427]
  69. Stat Methods Med Res. 2019 Dec;28(12):3502-3515 [PMID: 30378472]

Grants

  1. MR/L010909/1/Medical Research Council
  2. MR/M013227/1/Medical Research Council

MeSH Term

Bayes Theorem
Humans
Linear Models
Longitudinal Studies
Markov Chains
Monte Carlo Method

Word Cloud

Created with Highcharts 10.0.0jointpredictionBayesianoutcomeslongitudinalestimationmodelsmodelassociationarticlesmodellingreviewstructuredynamicclinicalresearchtime-to-eventdataapproachesfocusedmethodologicaleffectusedtwohowevertimelackJointBACKGROUND:increasinginterestsincereducesbiasparameterincreasesefficiencystatisticalinferenceInferencefrequentistextensivelyreviewedduerecentpopularitydata-drivencurrentusefuldrawrecommendationsfutureresearchesMETHODS:undertakencomprehensiveunivariatemultivariatetypeassumptionsalgorithmsoftwareimplementationRESULTS:total89identifiedconsisting7514appliedcommonapproachjointlyincludedlinearmixedproportionalhazardsrandomgenerallylinkingsub-modelsMarkovChainMonteCarloMCMCalgorithmscommonly93%estimateparameterssixprimarilypredictionsevent-timeCONCLUSION:Methodologieswidevarietytypesproposedlimitedchangesalsomethodsdetermineabsencebackgroundknowledgeprovedbeneficialproducingaccuratesufficienttoolsvalidateeventdata:DynamicLongitudinalTime-to-event

Similar Articles

Cited By