Deep learning in gastric tissue diseases: a systematic review.

Wanderson Gonçalves E Gonçalves, Marcelo Henrique de Paula Dos Santos, Fábio Manoel França Lobato, Ândrea Ribeiro-Dos-Santos, Gilderlanio Santana de Araújo
Author Information
  1. Wanderson Gonçalves E Gonçalves: Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. ORCID
  2. Marcelo Henrique de Paula Dos Santos: Engenharia da Computação, Universidade Federal do Pará, Belém, Pará, Brazil.
  3. Fábio Manoel França Lobato: Instituto de Engenharia e Geociências, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil.
  4. Ândrea Ribeiro-Dos-Santos: Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
  5. Gilderlanio Santana de Araújo: Laboratório de Genética Humana e Médica - Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil. ORCID

Abstract

Background: In recent years, deep learning has gained remarkable attention in medical image analysis due to its capacity to provide results comparable to specialists and, in some cases, surpass them. Despite the emergence of deep learning research on gastric tissues diseases, few intensive reviews are addressing this topic.
Method: We performed a systematic review related to applications of deep learning in gastric tissue disease analysis by digital histology, endoscopy and radiology images.
Conclusions: This review highlighted the high potential and shortcomings in deep learning research studies applied to gastric cancer, ulcer, gastritis and non-malignant diseases. Our results demonstrate the effectiveness of gastric tissue analysis by deep learning applications. Moreover, we also identified gaps of evaluation metrics, and image collection availability, therefore, impacting experimental reproducibility.

Keywords

References

  1. Nat Med. 2019 Jul;25(7):1054-1056 [PMID: 31160815]
  2. Gut. 2020 Jan;69(1):4-6 [PMID: 31375599]
  3. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  4. Nat Rev Cancer. 2018 Aug;18(8):500-510 [PMID: 29777175]
  5. Korean J Radiol. 2017 Jul-Aug;18(4):570-584 [PMID: 28670152]
  6. CA Cancer J Clin. 2011 Mar-Apr;61(2):69-90 [PMID: 21296855]
  7. IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):855-68 [PMID: 19299860]
  8. IEEE Trans Biomed Eng. 2020 Mar;67(3):854-867 [PMID: 31199249]
  9. Ann Gastroenterol. 2018 Jul-Aug;31(4):462-468 [PMID: 29991891]
  10. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21 [PMID: 28055930]
  11. Endoscopy. 2019 Dec;51(12):1121-1129 [PMID: 31443108]
  12. Lancet. 2016 Nov 26;388(10060):2654-2664 [PMID: 27156933]
  13. Arch Pathol Lab Med. 2020 Mar;144(3):370-378 [PMID: 31246112]
  14. Cancers (Basel). 2013 Jan 16;5(1):48-63 [PMID: 24216698]
  15. Science. 2015 Jun 26;348(6242):1403 [PMID: 26113692]
  16. JCO Clin Cancer Inform. 2018 Dec;2:1-14 [PMID: 30652558]
  17. OMICS. 2018 Oct;22(10):630-636 [PMID: 30124358]
  18. Bioinformatics. 2016 Jun 15;32(12):1832-9 [PMID: 26873929]
  19. J Gastroenterol. 2019 Apr;54(4):321-329 [PMID: 30284046]
  20. Cancer Epidemiol Biomarkers Prev. 2016 Jan;25(1):16-27 [PMID: 26667886]
  21. Diagn Ther Endosc. 2013;2013:241320 [PMID: 23533320]
  22. Endosc Int Open. 2018 Feb;6(2):E139-E144 [PMID: 29399610]
  23. Gut. 2019 Dec;68(12):2161-2169 [PMID: 30858305]
  24. Pathol Int. 2019 Jul;69(7):437-439 [PMID: 31276267]
  25. Nat Biotechnol. 2018 Aug 6;36(8):673-674 [PMID: 30080822]
  26. Nat Med. 2019 Jun;25(6):954-961 [PMID: 31110349]
  27. Surg Endosc. 2019 Nov;33(11):3790-3797 [PMID: 30719560]
  28. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  29. Gastric Cancer. 2018 Jul;21(4):653-660 [PMID: 29335825]
  30. J Healthc Eng. 2018 Jun 21;2018:8961781 [PMID: 30034677]
  31. Brief Bioinform. 2018 Nov 27;19(6):1236-1246 [PMID: 28481991]
  32. Comput Med Imaging Graph. 2017 Nov;61:2-13 [PMID: 28676295]
  33. World J Gastroenterol. 2018 Dec 7;24(45):5057-5062 [PMID: 30568383]
  34. Ann Oncol. 2018 Aug 1;29(8):1836-1842 [PMID: 29846502]
  35. Transl Res. 2018 Apr;194:19-35 [PMID: 29175265]
  36. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  37. Gut Liver. 2019 Jan 11;13(4):388-393 [PMID: 30630221]
  38. IEEE J Biomed Health Inform. 2019 May;23(3):1205-1214 [PMID: 29994489]
  39. Neural Netw. 2015 Jan;61:85-117 [PMID: 25462637]

MeSH Term

Deep Learning
Gastritis
Humans
Radiography
Radiology
Reproducibility of Results

Word Cloud

Created with Highcharts 10.0.0learninggastricdeepanalysisimagediseasesreviewtissuemedicalresultsresearchsystematicapplicationsBackground:recentyearsgainedremarkableattentionduecapacityprovidecomparablespecialistscasessurpassDespiteemergencetissuesintensivereviewsaddressingtopicMethod:performedrelateddiseasedigitalhistologyendoscopyradiologyimagesConclusions:highlightedhighpotentialshortcomingsstudiesappliedcancerulcergastritisnon-malignantdemonstrateeffectivenessMoreoveralsoidentifiedgapsevaluationmetricscollectionavailabilitythereforeimpactingexperimentalreproducibilityDeepdiseases:decision

Similar Articles

Cited By