The H2B ubiquitin-protein ligase RNF40 is required for somatic cell reprogramming.

Wanhua Xie, Michaela Miehe, Sandra Laufer, Steven A Johnsen
Author Information
  1. Wanhua Xie: The Precise Medicine Center, Shenyang Medical College, Shenyang, China. wanhuaxie@icloud.com.
  2. Michaela Miehe: Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  3. Sandra Laufer: Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
  4. Steven A Johnsen: Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. johnsen.steven@mayo.edu. ORCID

Abstract

Direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) requires a resetting of the epigenome in order to facilitate a cell fate transition. Previous studies have shown that epigenetic modifying enzymes play a central role in controlling induced pluripotency and the generation of iPSC. Here we show that RNF40, a histone H2B lysine 120 E3 ubiquitin-protein ligase, is specifically required for early reprogramming during induced pluripotency. Loss of RNF40-mediated H2B monoubiquitination (H2Bub1) impaired early gene activation in reprogramming. We further show that RNF40 contributes to tissue-specific gene suppression via indirect effects by controlling the expression of the polycomb repressive complex-2 histone methyltransferase component EZH2, as well as through more direct effects by promoting the resolution of H3K4me3/H3K27me3 bivalency on H2Bub1-occupied pluripotency genes. Thus, we identify RNF40 as a central epigenetic mediator of cell state transition with distinct functions in resetting somatic cell state to pluripotency.

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006). [DOI: 10.1016/j.cell.2006.07.024]
  2. Carey, B. W., Markoulaki, S., Beard, C., Hanna, J. & Jaenisch, R. Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nat. Methods 7, 56–59 (2010). [DOI: 10.1038/nmeth.1410]
  3. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010). [>PMCID: ]
  4. Hormanseder, E. et al. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143 e136 (2017). [>PMCID: ]
  5. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012). [>PMCID: ]
  6. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151, 994–1004 (2012). [>PMCID: ]
  7. Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012). [DOI: 10.1038/nature11272]
  8. Johnsen, S. A. The enigmatic role of H2Bub1 in cancer. FEBS Lett. 586, 1592–1601 (2012). [DOI: 10.1016/j.febslet.2012.04.002]
  9. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7, 113–119 (2011). [>PMCID: ]
  10. Fuchs, G. et al. RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol. Cell 46, 662–673 (2012). [>PMCID: ]
  11. Karpiuk, O. et al. The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol. Cell 46, 705–713 (2012). [DOI: 10.1016/j.molcel.2012.05.022]
  12. Xie, W. et al. RNF40 regulates gene expression in an epigenetic context-dependent manner. Genome Biol. 18, 32 (2017). [>PMCID: ]
  13. Chen, S., Li, J., Wang, D. L. & Sun, F. L. Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation. Cell Res. 22, 1402–1405 (2012). [>PMCID: ]
  14. Chen, J. et al. Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming. Cell Rep. 14, 1540–1554 (2016). [DOI: 10.1016/j.celrep.2016.01.013]
  15. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010). [DOI: 10.1016/j.stem.2010.04.014]
  16. Guo, S. et al. Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662 (2014). [>PMCID: ]
  17. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009). [>PMCID: ]
  18. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009). [>PMCID: ]
  19. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012). [>PMCID: ]
  20. Buganim, Y., Faddah, D. A. & Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14, 427–439 (2013). [>PMCID: ]
  21. Kosinsky, R. L. et al. Loss of RNF40 decreases NF-kappaB activity in colorectal cancer cells and reduces colitis burden in mice. J. Crohn’s Colitis 13, 362–373 (2019). [DOI: 10.1093/ecco-jcc/jjy165]
  22. Bedi, U. et al. SUPT6H controls estrogen receptor activity and cellular differentiation by multiple epigenomic mechanisms. Oncogene 34, 465–473 (2015). [DOI: 10.1038/onc.2013.558]
  23. Prenzel, T. et al. Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res. 71, 5739–5753 (2011). [DOI: 10.1158/0008-5472.CAN-11-1896]
  24. Shema, E. et al. The histone H2B-specific ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through selective regulation of gene expression. Genes Dev. 22, 2664–2676 (2008). [>PMCID: ]
  25. Tarcic, O. et al. RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-like versus luminal breast cancer. Cell Death Differ. 24, 694–704 (2017). [>PMCID: ]
  26. Wang, E. et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc. Natl Acad. Sci. USA 110, 3901–3906 (2013). [DOI: 10.1073/pnas.1301045110]
  27. Arora, M. et al. Promoters active in interphase are bookmarked during mitosis by ubiquitination. Nucleic acids Res. 40, 10187–10202 (2012). [>PMCID: ]
  28. Jaaskelainen, T. et al. Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth. Mol. Cell. Endocrinol. 350, 87–98 (2012). [DOI: 10.1016/j.mce.2011.11.025]
  29. Sadeghi, L., Siggens, L., Svensson, J. P. & Ekwall, K. Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nat. Struct. Mol. Biol. 21, 236–243 (2014). [DOI: 10.1038/nsmb.2776]
  30. Shiloh, Y., Shema, E., Moyal, L. & Oren, M. RNF20-RNF40: a ubiquitin-driven link between gene expression and the DNA damage response. FEBS Lett. 585, 2795–2802 (2011). [DOI: 10.1016/j.febslet.2011.07.034]
  31. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006). [DOI: 10.1016/j.cell.2006.02.041]
  32. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013). [>PMCID: ]
  33. Polo, J. M. et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151, 1617–1632 (2012). [>PMCID: ]
  34. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). [>PMCID: ]
  35. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). [DOI: 10.1073/pnas.0506580102]
  36. Huang, D. W. et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35, W169–W175 (2007). [>PMCID: ]
  37. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). [>PMCID: ]
  38. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). [>PMCID: ]
  39. Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014). [>PMCID: ]
  40. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinforma. 14, 178–192 (2013). [DOI: 10.1093/bib/bbs017]
  41. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004). [>PMCID: ]
  42. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007). [DOI: 10.1016/j.cell.2007.11.019]
  43. Berthelet, S. et al. Functional genomics analysis of the Saccharomyces cerevisiae iron responsive transcription factor Aft1 reveals iron-independent functions. Genetics 185, 1111–1128 (2010). [>PMCID: ]
  44. Hussein, S. M. et al. Genome-wide characterization of the routes to pluripotency. Nature 516, 198–206 (2014). [DOI: 10.1038/nature14046]
  45. Festuccia, N. et al. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 11, 477–490 (2012). [>PMCID: ]
  46. Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8, 1114–1123 (2006). [DOI: 10.1038/ncb1481]
  47. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015). [>PMCID: ]
  48. Lee, B. K. et al. Fbxl19 recruitment to CpG islands is required for Rnf20-mediated H2B mono-ubiquitination. Nucleic Acids Res. 45, 7151–7166 (2017). [>PMCID: ]
  49. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007). [>PMCID: ]
  50. Lee, D. S. et al. An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat. Commun. 5, 5619 (2014). [>PMCID: ]
  51. Qin, H. et al. Systematic identification of barriers to human iPSC generation. Cell 158, 449–461 (2014). [>PMCID: ]
  52. Hanna, J. H., Saha, K. & Jaenisch, R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525 (2010). [>PMCID: ]
  53. Luo, Z. et al. The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol. Cell. Biol. 32, 2608–2617 (2012). [>PMCID: ]
  54. Alexander, L. M. M. et al. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Mol. Immunol. 91, 8–16 (2017). [>PMCID: ]
  55. Wang, L., Gao, W., Hu, F., Xu, Z. & Wang, F. MicroRNA-874 inhibits cell proliferation and induces apoptosis in human breast cancer by targeting CDK9. FEBS Lett. 588, 4527–4535 (2014). [DOI: 10.1016/j.febslet.2014.09.035]
  56. Nagarajan, S. et al. Bromodomain protein BRD4 is required for estrogen receptor-dependent enhancer activation and gene transcription. Cell Rep. 8, 460–469 (2014). [>PMCID: ]
  57. Kueh, H. Y., Champhekar, A., Nutt, S. L., Elowitz, M. B. & Rothenberg, E. V. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673 (2013). [>PMCID: ]
  58. Pauklin, S. & Vallier, L. The cell-cycle state of stem cells determines cell fate propensity. Cell 156, 1338 (2014). [>PMCID: ]
  59. Tsunekawa, Y. et al. Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates. EMBO J. 31, 1879–1892 (2012). [>PMCID: ]
  60. Shchebet, A., Karpiuk, O., Kremmer, E., Eick, D. & Johnsen, S. A. Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle 11, 2122–2127 (2012). [DOI: 10.4161/cc.20548]
  61. Zhang, F. & Yu, X. WAC, a functional partner of RNF20/40, regulates histone H2B ubiquitination and gene transcription. Mol. Cell 41, 384–397 (2011). [>PMCID: ]
  62. Pavri, R. et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125, 703–717 (2006). [DOI: 10.1016/j.cell.2006.04.029]
  63. Chen, K. et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat. Genet. 47, 1149–1157 (2015). [>PMCID: ]

MeSH Term

Cell Differentiation
Cellular Reprogramming
Humans
Induced Pluripotent Stem Cells
Protein Processing, Post-Translational
Ubiquitin-Protein Ligases

Chemicals

RNF40 protein, human
Ubiquitin-Protein Ligases

Word Cloud

Created with Highcharts 10.0.0reprogrammingcellpluripotencyRNF40somaticinducedH2Bcellsresettingtransitionepigeneticcentralcontrollingshowhistoneubiquitin-proteinligaserequiredearlygeneeffectsstateDirectpluripotentstemiPSCsrequiresepigenomeorderfacilitatefatePreviousstudiesshownmodifyingenzymesplayrolegenerationiPSClysine120E3specificallyLossRNF40-mediatedmonoubiquitinationH2Bub1impairedactivationcontributestissue-specificsuppressionviaindirectexpressionpolycombrepressivecomplex-2methyltransferasecomponentEZH2welldirectpromotingresolutionH3K4me3/H3K27me3bivalencyH2Bub1-occupiedgenesThusidentifymediatordistinctfunctions

Similar Articles

Cited By