Dominant and opponent relations in cortical function: An EEG study of exam performance and stress.

Lucia P Pavlova, Dmitrii N Berlov, Andres Kurismaa
Author Information
  1. Lucia P Pavlova: Department of Higher Nervous Activity and Psychophysiology, Faculty of Biology, St. Petersburg State University, St.-Petersburg, Russia.
  2. Dmitrii N Berlov: Department of Anatomy and Physiology of Humans and Animals, Herzen State Pedagogical University of Russia, St.-Petersburg, Russia.
  3. Andres Kurismaa: Department of History and Philosophy of Science, Faculty of Science, Charles University in Prague, Czech Republic.

Abstract

This paper analyzes the opponent dynamics of human motivational and affective processes, as conceptualized by RS Solomon, from the position of AA Ukhtomsky's neurophysiological principle of the dominant and its applications in the field of human electroencephalographic analysis. As an experimental model, we investigate the dynamics of cortical activity in students submitting university final course oral examinations in naturalistic settings, and show that successful performance in these settings depends on the presence of specific types of cortical activation patterns, involving high indices of left-hemispheric and frontal cortical dominance, whereas the lack thereof predicts poor performance on the task, and seems to be associated with difficulties in the executive regulation of cognitive (intellectual) and motivational processes in these highly demanding and stressful conditions. Based on such knowledge, improved educational and therapeutic interventions can be suggested which take into account individual variability in the neurocognitive mechanisms underlying adaptation to motivationally and intellectually challenging, stressful tasks, such as oral university exams. Some implications of this research for opponent-process theory and its closer integration into current neuroscience research on acquired motivations are discussed.

Keywords

References

  1. Neuropsychopharmacology. 2011 Jan;36(1):74-97 [PMID: 20881948]
  2. Biol Psychol. 2004 Oct;67(1-2):219-33 [PMID: 15130532]
  3. J Affect Disord. 2015 Mar 1;173:90-6 [PMID: 25462401]
  4. J Appl Physiol (1985). 2002 Apr;92(4):1378-82 [PMID: 11896000]
  5. Clin Neurophysiol. 2007 Dec;118(12):2765-73 [PMID: 17911042]
  6. J Sports Sci. 2005 May;23(5):477-500 [PMID: 16194996]
  7. Front Integr Neurosci. 2016 Nov 29;10:41 [PMID: 27965548]
  8. Horm Behav. 2003 Jan;43(1):21-7; discussion 28-30 [PMID: 12614630]
  9. Biol Psychol. 1979 Jun;8(4):273-84 [PMID: 486626]
  10. Biol Psychol. 2007 Jul;75(3):239-47 [PMID: 17512106]
  11. Neurosci Biobehav Rev. 2014 Jul;44:124-41 [PMID: 24125857]
  12. Appl Psychophysiol Biofeedback. 2005 Mar;30(1):1-10 [PMID: 15889581]
  13. Int J Psychophysiol. 2017 Sep;119:19-30 [PMID: 28288803]
  14. Prog Brain Res. 2006;159:211-22 [PMID: 17071233]
  15. Neuron. 2017 Feb 8;93(3):480-490 [PMID: 28182904]
  16. Prog Brain Res. 2000;126:3-28 [PMID: 11105636]
  17. Trends Cogn Sci. 2012 Dec;16(12):606-17 [PMID: 23141428]
  18. Bioessays. 2007 Apr;29(4):324-33 [PMID: 17373655]
  19. Cogn Emot. 2015;29(4):578-91 [PMID: 24889219]
  20. Springerplus. 2015 Jul 14;4:345 [PMID: 26191472]
  21. Stress. 2006 Dec;9(4):199-206 [PMID: 17175505]
  22. Physiol Behav. 2012 Apr 12;106(1):5-15 [PMID: 21684297]
  23. Int J Psychophysiol. 2007 Mar;63(3):302-7 [PMID: 17289192]
  24. Front Psychol. 2016 Jan 07;6:1890 [PMID: 26779053]
  25. Psychon Bull Rev. 2016 Oct;23(5):1415-1428 [PMID: 26833316]
  26. Am Psychol. 1980 Aug;35(8):691-712 [PMID: 7416563]
  27. Open Neuroimag J. 2010 Sep 08;4:130-56 [PMID: 21379390]
  28. Behav Cogn Neurosci Rev. 2005 Mar;4(1):3-20 [PMID: 15886400]
  29. Int J Psychophysiol. 2009 May;72(2):166-72 [PMID: 19110012]
  30. Anxiety Stress Coping. 2015;28(2):205-14 [PMID: 24902852]
  31. Front Hum Neurosci. 2010 Nov 04;4:186 [PMID: 21119777]
  32. Psychoneuroendocrinology. 1997 Aug;22(6):423-41 [PMID: 9364621]
  33. Integr Psychol Behav Sci. 2007 Mar;41(1):35-40; discussion 75-82 [PMID: 17992867]
  34. Crit Rev Toxicol. 2008;38(4):249-52 [PMID: 18432418]
  35. Int J Psychophysiol. 2001 Dec;43(1):41-58 [PMID: 11742684]
  36. Psychoneuroendocrinology. 2008 Jan;33(1):83-91 [PMID: 18022766]
  37. Res Q Exerc Sport. 2010 Sep;81(3):349-59 [PMID: 20949855]
  38. Cell Mol Biol (Noisy-le-grand). 2005 Dec 16;51(8):715-23 [PMID: 16359621]
  39. Clin Neurophysiol. 1999 Nov;110(11):1842-57 [PMID: 10576479]
  40. Brain Res. 2013 Nov 20;1539:95-104 [PMID: 24120986]
  41. Psychol Rev. 1974 Mar;81(2):119-45 [PMID: 4817611]
  42. Curr Biol. 2011 Dec 6;21(23):1988-93 [PMID: 22100063]
  43. Front Hum Neurosci. 2012 Apr 03;6:74 [PMID: 22514527]
  44. Crit Rev Toxicol. 2008;38(7):633-9 [PMID: 18709572]
  45. J Affect Disord. 2013 May 15;148(1):1-11 [PMID: 23246209]
  46. Brain Res Brain Res Rev. 2001 Apr;35(2):146-60 [PMID: 11336780]
  47. Clin Neurophysiol. 2007 Aug;118(8):1877-88 [PMID: 17574912]
  48. Gig Tr Prof Zabol. 1975 May;(5):28-32 [PMID: 1213500]
  49. Neural Netw. 2002 Jun-Jul;15(4-6):603-16 [PMID: 12371515]

Word Cloud

Created with Highcharts 10.0.0corticalopponentprocessesperformancedynamicshumanmotivationalprincipledominantactivityuniversityoralsettingsstressfulindividualvariabilityresearchpaperanalyzesaffectiveconceptualizedRSSolomonpositionAAUkhtomsky'sneurophysiologicalapplicationsfieldelectroencephalographicanalysisexperimentalmodelinvestigatestudentssubmittingfinalcourseexaminationsnaturalisticshowsuccessfuldependspresencespecifictypesactivationpatternsinvolvinghighindicesleft-hemisphericfrontaldominancewhereaslackthereofpredictspoortaskseemsassociateddifficultiesexecutiveregulationcognitiveintellectualhighlydemandingconditionsBasedknowledgeimprovededucationaltherapeuticinterventionscansuggestedtakeaccountneurocognitivemechanismsunderlyingadaptationmotivationallyintellectuallychallengingtasksexamsimplicationsopponent-processtheorycloserintegrationcurrentneuroscienceacquiredmotivationsdiscussedDominantrelationsfunction:EEGstudyexamstresselectroencephalogramfunctionalasymmetry

Similar Articles

Cited By