Antimicrobial Peptides from Rat-Tailed Maggots of the Drone Fly Show Potent Activity against Multidrug-Resistant Gram-Negative Bacteria.

Rolf Hirsch, Jochen Wiesner, Armin Bauer, Alexander Marker, Heiko Vogel, Peter Eugen Hammann, Andreas Vilcinskas
Author Information
  1. Rolf Hirsch: Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.
  2. Jochen Wiesner: Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.
  3. Armin Bauer: Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany.
  4. Alexander Marker: Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt, Germany.
  5. Heiko Vogel: Max-Planck Institute for Chemical Ecology, Department of Entomology, Hans-Knoell-Strasse 8, 07745 Jena, Germany.
  6. Peter Eugen Hammann: Evotec International GmbH, Marie-Curie-Str. 7, 37079 Göttingen, Germany.
  7. Andreas Vilcinskas: Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany.

Abstract

The spread of multidrug-resistant Gram-negative bacteria is an increasing threat to human health, because novel compound classes for the development of antibiotics have not been discovered for decades. Antimicrobial peptides (AMPs) may provide a much-needed breakthrough because these immunity-related defense molecules protect many eukaryotes against Gram-negative pathogens. Recent concepts in evolutionary immunology predict the presence of potent AMPs in insects that have adapted to survive in habitats with extreme microbial contamination. For example, the saprophagous and coprophagous maggots of the drone fly (Diptera) can flourish in polluted aquatic habitats, such as sewage tanks and farmyard liquid manure storage pits. We used next-generation sequencing to screen the immunity-related transcriptome for AMPs that are synthesized in response to the injection of bacterial lipopolysaccharide. We identified 22 AMPs and selected nine for larger-scale synthesis to test their activity against a broad spectrum of pathogens, including multidrug-resistant Gram-negative bacteria. Two cecropin-like peptides (EtCec1-a and EtCec2-a) and a diptericin-like peptide (EtDip) displayed strong activity against the pathogens, even under simulated physiological conditions, and also achieved a good therapeutic window. Therefore, these AMPs could be used as leads for the development of novel antibiotics.

Keywords

References

  1. Eur J Biochem. 1999 Dec;266(2):549-58 [PMID: 10561597]
  2. Sci Rep. 2016 May 03;6:25409 [PMID: 27139635]
  3. Pharm Res. 1993 Jul;10(7):1093-5 [PMID: 8378254]
  4. Biol Chem. 2016 Sep 1;397(9):939-45 [PMID: 27105487]
  5. Antimicrob Agents Chemother. 1999 Jul;43(7):1542-8 [PMID: 10390200]
  6. Clin Infect Dis. 2005 May 1;40(9):1333-41 [PMID: 15825037]
  7. Adv Exp Med Biol. 2019;1214:43-59 [PMID: 30269257]
  8. J Insect Physiol. 2013 Feb;59(2):123-9 [PMID: 22985862]
  9. Expert Rev Anti Infect Ther. 2014 Dec;12(12):1477-86 [PMID: 25371141]
  10. Antimicrob Agents Chemother. 2015 Feb;59(2):1329-33 [PMID: 25421473]
  11. Prog Lipid Res. 2012 Apr;51(2):149-77 [PMID: 22245454]
  12. Sci Rep. 2017 Dec 22;7(1):18098 [PMID: 29273750]
  13. Eur J Clin Microbiol Infect Dis. 2014 Sep;33(9):1505-10 [PMID: 24798249]
  14. Expert Opin Ther Pat. 2016 Jun;26(6):689-702 [PMID: 27063450]
  15. J Antimicrob Chemother. 1986 Nov;18(5):557-63 [PMID: 3027012]
  16. Trends Biotechnol. 2011 Sep;29(9):464-72 [PMID: 21680034]
  17. Biochem J. 1986 Nov 1;239(3):717-22 [PMID: 3827823]
  18. Dev Comp Immunol. 2020 Feb;103:103471 [PMID: 31634521]
  19. J Antimicrob Chemother. 2006 Jul;58(1):95-100 [PMID: 16636085]
  20. Nat Microbiol. 2016 Sep 12;1(11):16162 [PMID: 27617798]
  21. Antimicrob Agents Chemother. 2010 Sep;54(9):4003-5 [PMID: 20585128]
  22. Curr Top Med Chem. 2017;17(5):508-519 [PMID: 28117020]
  23. PLoS One. 2017 Aug 24;12(8):e0183263 [PMID: 28837596]
  24. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160593]
  25. Drug Resist Updat. 2016 May;26:43-57 [PMID: 27180309]
  26. Chem Immunol Allergy. 2005;86:1-21 [PMID: 15976485]
  27. Curr Opin Pharmacol. 2006 Oct;6(5):468-72 [PMID: 16890021]
  28. J Antimicrob Chemother. 2019 Jan 1;74(1):96-107 [PMID: 30272195]
  29. Clin Microbiol Infect. 2012 Apr;18(4):383-7 [PMID: 21672084]
  30. Sci Rep. 2017 Jul 31;7(1):6953 [PMID: 28761101]
  31. Peptides. 2016 Apr;78:17-23 [PMID: 26845197]
  32. Int J Antimicrob Agents. 2012 Apr;39(4):317-20 [PMID: 22326566]
  33. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  34. Sci Rep. 2017 Sep 21;7(1):12124 [PMID: 28935900]
  35. J Biol Chem. 2005 Jun 24;280(25):23605-14 [PMID: 15843374]
  36. Peptides. 2008 Jan;29(1):1-6 [PMID: 18045738]
  37. Dev Comp Immunol. 2017 Feb;67:452-456 [PMID: 27693193]
  38. J Microbiol. 2017 Jan;55(1):1-12 [PMID: 28035594]
  39. Immunol Today. 1992 Oct;13(10):411-5 [PMID: 1418378]
  40. Antimicrob Agents Chemother. 2001 Jul;45(7):2030-7 [PMID: 11408219]
  41. Curr Drug Metab. 2007 Jan;8(1):33-45 [PMID: 17266522]
  42. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1717-24 [PMID: 26729502]
  43. Front Microbiol. 2014 Nov 26;5:643 [PMID: 25505462]
  44. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  45. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28584137]
  46. Cell. 2017 Apr 20;169(3):422-430.e10 [PMID: 28431243]
  47. J Immunol. 1984 May;132(5):2582-9 [PMID: 6325539]
  48. Proc Biol Sci. 2015 May 7;282(1806):20150293 [PMID: 25833860]
  49. Antimicrob Agents Chemother. 2015 May;59(5):2508-14 [PMID: 25666157]
  50. Front Chem. 2017 Jul 12;5:45 [PMID: 28748179]
  51. Peptides. 2011 Jul;32(7):1488-95 [PMID: 21664394]
  52. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  53. Antimicrob Agents Chemother. 2013 Aug;57(8):4050-2 [PMID: 23716061]
  54. Int J Mol Sci. 2019 Feb 05;20(3): [PMID: 30764495]
  55. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  56. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  57. Dev Comp Immunol. 2015 Apr;49(2):303-12 [PMID: 25479015]
  58. Sci Rep. 2016 May 12;6:26077 [PMID: 27169671]
  59. Antimicrob Agents Chemother. 2005 Jul;49(7):2665-72 [PMID: 15980334]
  60. PLoS One. 2015 Dec 11;10(12):e0144611 [PMID: 26656394]
  61. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28167546]
  62. J Biol Chem. 2002 Dec 20;277(51):49921-6 [PMID: 12372834]
  63. Methods Mol Biol. 2017;1641:187-199 [PMID: 28748465]
  64. ACS Chem Biol. 2010 Oct 15;5(10):905-17 [PMID: 20698568]
  65. ACS Infect Dis. 2015;1(11):512-522 [PMID: 26925460]
  66. BMC Genomics. 2007 Sep 17;8:326 [PMID: 17875201]
  67. ACS Omega. 2018 May 31;3(5):5390-5398 [PMID: 30221230]
  68. J Invertebr Pathol. 2015 Nov;132:208-215 [PMID: 26522790]

Grants

  1. LOEWE Center for Insect Biotechnology and Bioresources/Hesse State Ministry of Higher Education, Research and the Arts
  2. 16GW0126/Bundesministerium für Bildung und Forschung

Word Cloud

Created with Highcharts 10.0.0AMPsGram-negativebacteriapeptidespathogensmultidrug-resistantnoveldevelopmentantibioticsAntimicrobialimmunity-relatedhabitatsusedactivityspreadincreasingthreathumanhealthcompoundclassesdiscovereddecadesmayprovidemuch-neededbreakthroughdefensemoleculesprotectmanyeukaryotesRecentconceptsevolutionaryimmunologypredictpresencepotentinsectsadaptedsurviveextrememicrobialcontaminationexamplesaprophagouscoprophagousmaggotsdroneflyDipteracanflourishpollutedaquaticsewagetanksfarmyardliquidmanurestoragepitsnext-generationsequencingscreentranscriptomesynthesizedresponseinjectionbacteriallipopolysaccharideidentified22selectedninelarger-scalesynthesistestbroadspectrumincludingTwocecropin-likeEtCec1-aEtCec2-adiptericin-likepeptideEtDipdisplayedstrongevensimulatedphysiologicalconditionsalsoachievedgoodtherapeuticwindowThereforeleadsPeptidesRat-TailedMaggotsDroneFlyShowPotentActivityMultidrug-ResistantGram-NegativeBacteriaEristalistenaxantibioticantimicrobialinnateimmunitytranscriptomics

Similar Articles

Cited By