Hydrocarbon-Stitched Peptide Agonists of Glucagon-Like Peptide-1 Receptor.

Gregory H Bird, Accalia Fu, Silvia Escudero, Marina Godes, Kwadwo Opoku-Nsiah, Thomas E Wales, Michael D Cameron, John R Engen, Nika N Danial, Loren D Walensky
Author Information
  1. Gregory H Bird: Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.
  2. Accalia Fu: Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston Massachusetts 02215, United States.
  3. Silvia Escudero: Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.
  4. Marina Godes: Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.
  5. Kwadwo Opoku-Nsiah: Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States.
  6. Thomas E Wales: Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.
  7. Michael D Cameron: DMPK Core, Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States.
  8. John R Engen: Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.
  9. Nika N Danial: Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston Massachusetts 02215, United States.
  10. Loren D Walensky: Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States. ORCID

Abstract

Glucagon-like peptide 1 (GLP-1) is a natural peptide agonist of the GLP-1 receptor (GLP-1R) found on pancreatic β-cells. Engagement of the receptor stimulates insulin release in a glucose-dependent fashion and increases β-cell mass, two ideal features for pharmacologic management of type 2 diabetes. Thus, intensive efforts have focused on developing GLP-1-based peptide agonists of GLP-1R for therapeutic application. A primary challenge has been the naturally short half-life of GLP-1 due to its rapid proteolytic degradation . Whereas mutagenesis and lipidation strategies have yielded clinical agents, we developed an alternative approach to preserving the structure and function of GLP-1 by all-hydrocarbon , + 7 stitching. This particular "stitch" is especially well-suited for reinforcing and protecting the structural fidelity of GLP-1. Lead constructs demonstrate striking proteolytic stability and potent biological activity . Thus, we report a facile approach to generating alternative GLP-1R agonists for glycemic control.

References

  1. Bioconjug Chem. 2015 Feb 18;26(2):329-37 [PMID: 25594741]
  2. Diabetes Care. 2018 Feb;41(2):258-266 [PMID: 29246950]
  3. J Am Chem Soc. 2007 Mar 7;129(9):2456-7 [PMID: 17284038]
  4. J Biol Chem. 2010 Jan 1;285(1):723-30 [PMID: 19861722]
  5. Nat Struct Mol Biol. 2014 Jan;21(1):36-42 [PMID: 24317490]
  6. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14093-8 [PMID: 20660316]
  7. J Med Chem. 2000 May 4;43(9):1664-9 [PMID: 10794683]
  8. Bioconjug Chem. 2016 Jul 20;27(7):1663-72 [PMID: 27327034]
  9. J Clin Invest. 2014 May;124(5):2113-24 [PMID: 24743147]
  10. Diabetes Care. 2005 May;28(5):1092-100 [PMID: 15855572]
  11. J Med Chem. 2010 Sep 9;53(17):6412-20 [PMID: 20687610]
  12. Chem Biol. 2013 Jul 25;20(7):888-902 [PMID: 23890007]
  13. Mol Cell. 2006 Oct 20;24(2):199-210 [PMID: 17052454]
  14. Cell Rep. 2018 Sep 25;24(13):3393-3403.e5 [PMID: 30257201]
  15. Cancer Cell. 2010 Nov 16;18(5):411-22 [PMID: 21075307]
  16. Nature. 2017 Jun 8;546(7657):312-315 [PMID: 28514449]
  17. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3445-54 [PMID: 23946421]
  18. Diabet Med. 2008 Feb;25(2):152-6 [PMID: 18201212]
  19. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E986-95 [PMID: 23404709]
  20. Nat Struct Mol Biol. 2014 Dec;21(12):1058-67 [PMID: 25420104]
  21. Biol Chem. 2004 Feb;385(2):169-77 [PMID: 15101559]
  22. Nat Med. 2008 Feb;14(2):144-53 [PMID: 18223655]
  23. Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E886-E895 [PMID: 29339518]
  24. Org Lett. 2013 Oct 18;15(20):5318-21 [PMID: 24087900]
  25. Endocrinology. 2010 Jun;151(6):2474-82 [PMID: 20382695]
  26. Diabetologia. 1998 Mar;41(3):271-8 [PMID: 9541166]
  27. J Clin Invest. 2012 Jun;122(6):2018-31 [PMID: 22622039]
  28. Cell Metab. 2006 Mar;3(3):153-65 [PMID: 16517403]
  29. N Engl J Med. 1992 May 14;326(20):1316-22 [PMID: 1348845]
  30. Sci Transl Med. 2018 Apr 11;10(436): [PMID: 29643228]
  31. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4140-5 [PMID: 27035989]
  32. J Am Chem Soc. 2014 Sep 17;136(37):12848-51 [PMID: 25191938]
  33. J Am Chem Soc. 2014 Sep 3;136(35):12314-22 [PMID: 25105213]
  34. Anal Chem. 2009 Oct 1;81(19):7870-5 [PMID: 19788312]
  35. Bioconjug Chem. 2005 Mar-Apr;16(2):377-82 [PMID: 15769092]
  36. Mol Cell. 2015 Mar 5;57(5):873-886 [PMID: 25684204]
  37. Lancet. 2006 Nov 11;368(9548):1696-705 [PMID: 17098089]
  38. Mol Cell. 2018 Mar 1;69(5):729-743.e7 [PMID: 29499131]
  39. Science. 2004 Sep 3;305(5689):1466-70 [PMID: 15353804]
  40. J Med Chem. 2008 May 8;51(9):2758-65 [PMID: 18412318]
  41. Nat Chem Biol. 2016 Oct;12(10):845-52 [PMID: 27547919]
  42. Nat Chem Biol. 2010 Aug;6(8):595-601 [PMID: 20562877]
  43. Cell Rep. 2015 Feb 3;10(4):497-504 [PMID: 25640178]
  44. J Med Chem. 2015 Sep 24;58(18):7370-80 [PMID: 26308095]
  45. J Med Chem. 2018 Apr 12;61(7):3218-3223 [PMID: 29528634]
  46. Nature. 2017 Jun 8;546(7657):254-258 [PMID: 28562585]

Grants

  1. R01 DK078081/NIDDK NIH HHS
  2. R35 CA197583/NCI NIH HHS
  3. R50 CA211399/NCI NIH HHS

MeSH Term

Animals
Cell Line
Drug Discovery
Glucagon-Like Peptide 1
Glucagon-Like Peptide-1 Receptor
Humans
Male
Mice
Molecular Docking Simulation
Peptides

Chemicals

Glucagon-Like Peptide-1 Receptor
Peptides
Glucagon-Like Peptide 1

Word Cloud

Created with Highcharts 10.0.0GLP-1peptideGLP-1RreceptorThusagonistsproteolyticalternativeapproachGlucagon-like1naturalagonistfoundpancreaticβ-cellsEngagementstimulatesinsulinreleaseglucose-dependentfashionincreasesβ-cellmasstwoidealfeaturespharmacologicmanagementtype2diabetesintensiveeffortsfocuseddevelopingGLP-1-basedtherapeuticapplicationprimarychallengenaturallyshorthalf-lifeduerapiddegradationWhereasmutagenesislipidationstrategiesyieldedclinicalagentsdevelopedpreservingstructurefunctionall-hydrocarbon+7stitchingparticular"stitch"especiallywell-suitedreinforcingprotectingstructuralfidelityLeadconstructsdemonstratestrikingstabilitypotentbiologicalactivityreportfacilegeneratingglycemiccontrolHydrocarbon-StitchedPeptideAgonistsGlucagon-LikePeptide-1Receptor

Similar Articles

Cited By