Medusa: Software to build and analyze ensembles of genome-scale metabolic network reconstructions.

Gregory L Medlock, Thomas J Moutinho, Jason A Papin
Author Information
  1. Gregory L Medlock: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America. ORCID
  2. Thomas J Moutinho: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America. ORCID
  3. Jason A Papin: Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America. ORCID

Abstract

Uncertainty in the structure and parameters of networks is ubiquitous across computational biology. In constraint-based reconstruction and analysis of metabolic networks, this uncertainty is present both during the reconstruction of networks and in simulations performed with them. Here, we present Medusa, a Python package for the generation and analysis of ensembles of genome-scale metabolic network reconstructions. Medusa builds on the COBRApy package for constraint-based reconstruction and analysis by compressing a set of models into a compact ensemble object, providing functions for the generation of ensembles using experimental data, and extending constraint-based analyses to ensemble scale. We demonstrate how Medusa can be used to generate ensembles and perform ensemble simulations, and how machine learning can be used in conjunction with Medusa to guide the curation of genome-scale metabolic network reconstructions. Medusa is available under the permissive MIT license from the Python Packaging Index (https://pypi.org) and from github (https://github.com/opencobra/Medusa), and comprehensive documentation is available at https://medusa.readthedocs.io/en/latest.

References

  1. Science. 2002 Mar 1;295(5560):1662-4 [PMID: 11872829]
  2. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17480-4 [PMID: 17088549]
  3. BMC Syst Biol. 2008 May 28;2:47 [PMID: 18507829]
  4. PLoS Comput Biol. 2013;9(3):e1002988 [PMID: 23555222]
  5. J Theor Biol. 2008 Sep 7;254(1):178-96 [PMID: 18572196]
  6. PLoS Comput Biol. 2014 Jun 12;10(6):e1003650 [PMID: 24922483]
  7. Methods Mol Biol. 2013;985:17-45 [PMID: 23417797]
  8. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  9. BMC Syst Biol. 2018 Jun 19;12(1):73 [PMID: 29914471]
  10. Mol Syst Biol. 2009;5:320 [PMID: 19888215]
  11. BMC Syst Biol. 2013 Aug 08;7:74 [PMID: 23927696]
  12. Cell Syst. 2018 Sep 26;7(3):245-257.e7 [PMID: 30195437]
  13. Front Physiol. 2012 Aug 06;3:299 [PMID: 22934050]
  14. J Biol Chem. 2009 Feb 27;284(9):5457-61 [PMID: 18940807]
  15. Synth Syst Biotechnol. 2017 Nov 15;2(4):243-252 [PMID: 29552648]
  16. PLoS Comput Biol. 2017 May 30;13(5):e1005568 [PMID: 28557990]
  17. Cell Syst. 2020 Jan 22;10(1):109-119.e3 [PMID: 31926940]
  18. PLoS Comput Biol. 2017 Mar 6;13(3):e1005413 [PMID: 28263984]
  19. Metab Eng. 2003 Oct;5(4):264-76 [PMID: 14642354]
  20. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  21. PLoS Comput Biol. 2014 Apr 24;10(4):e1003580 [PMID: 24762745]
  22. Nat Rev Mol Cell Biol. 2006 Nov;7(11):820-8 [PMID: 17057752]
  23. Nucleic Acids Res. 2018 Sep 6;46(15):7542-7553 [PMID: 30192979]
  24. Bioinformatics. 2003 Mar 1;19(4):524-31 [PMID: 12611808]

Grants

  1. T35 AI060528/NIAID NIH HHS
  2. R01 GM108501/NIGMS NIH HHS
  3. R01 AT010253/NCCIH NIH HHS
  4. T32 LM012416/NLM NIH HHS

MeSH Term

Computational Biology
Computer Simulation
Genome
Machine Learning
Metabolic Networks and Pathways
Software

Word Cloud

Created with Highcharts 10.0.0Medusametabolicensemblesnetworksconstraint-basedreconstructionanalysisgenome-scalenetworkreconstructionsensemblepresentsimulationsPythonpackagegenerationcanusedavailableUncertaintystructureparametersubiquitousacrosscomputationalbiologyuncertaintyperformedbuildsCOBRApycompressingsetmodelscompactobjectprovidingfunctionsusingexperimentaldataextendinganalysesscaledemonstrategenerateperformmachinelearningconjunctionguidecurationpermissiveMITlicensePackagingIndexhttps://pypiorggithubhttps://githubcom/opencobra/Medusacomprehensivedocumentationhttps://medusareadthedocsio/en/latestMedusa:Softwarebuildanalyze

Similar Articles

Cited By