Neurotoxic Anatoxin-a Can Also Exert Immunotoxicity by the Induction of Apoptosis on Lymphocytes When Exposed to Environmentally Relevant Concentrations.

Yuchi Zhong, Lilai Shen, Xueping Ye, Dongren Zhou, Yunyi He, Yan Li, Ying Ding, Weiqin Zhu, Jiafeng Ding, Hangjun Zhang
Author Information
  1. Yuchi Zhong: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  2. Lilai Shen: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  3. Xueping Ye: Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
  4. Dongren Zhou: Zhejiang Institute of Freshwater Fisheries, Huzhou, China.
  5. Yunyi He: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  6. Yan Li: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  7. Ying Ding: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  8. Weiqin Zhu: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  9. Jiafeng Ding: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
  10. Hangjun Zhang: School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.

Abstract

Hazardous anatoxin-a (ANTX-a) is produced by freshwater algal blooms worldwide, which greatly increases the risk of consumer exposure. Although ANTX-a shows widespread neurotoxicity in aquatic animals, little is known about its mechanism of action and biotransformation in biological systems, especially in immunobiological models. In this study, transmission electron microscopy results showed that ANTX-a can destroy lymphocytes of by inducing cytoplasmic concentration, vacuolation, and swollen mitochondria. DNA fragmentations clearly showed a ladder pattern in agarose gel electrophoresis, which demonstrated that the apoptosis of fish lymphocytes was caused by exposure to ANTX-a. Flow cytometry results showed that the apoptotic percentage of fish lymphocytes exposed to 0.01, 0.1, 1, and 10 mg/L of ANTX-a for 12 h reached 18.89, 22.89, 39.23, and 35.58%, respectively. ANTX-a exposure induced a significant increase in reactive oxygen species (ROS) and malonaldehyde (MDA) in lymphocytes. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and the glutathione (GSH) content of the 0.01 mg/L ANTX-a-treated group decreased significantly by about 41, 46, 67, and 54% compared with that of the control group ( < 0.01), respectively. Although these observations were dose-dependent, these results suggested that ANTX-a can induce lymphocyte apoptosis via intracellular oxidative stress and destroy the antioxidant system after a short exposure time of only 12 h. Besides neurotoxicity, ANTX-a may also be toxic to the immune system of fish, even when the fish are exposed to environmentally relevant concentrations, which clearly demonstrated that the potential health risks induced by ANTX-a in aquatic organisms requires attention.

Keywords

References

  1. Toxicol In Vitro. 2020 Feb;62:104713 [PMID: 31706034]
  2. Toxicol In Vitro. 2019 Aug;58:69-77 [PMID: 30905859]
  3. Cell. 2018 Aug 23;174(5):1054-1066 [PMID: 30142344]
  4. Food Chem Toxicol. 2008 Nov;46(11):3443-7 [PMID: 18790714]
  5. J Hazard Mater. 2014 Jun 15;274:247-57 [PMID: 24794815]
  6. J Toxicol Environ Health A. 2018;81(14):620-632 [PMID: 29764335]
  7. Fish Shellfish Immunol. 2012 Dec;33(6):1229-37 [PMID: 22951228]
  8. J Environ Qual. 2008 Aug 08;37(5):1817-24 [PMID: 18689743]
  9. Harmful Algae. 2016 Apr;54:21-43 [PMID: 28073477]
  10. Ecotoxicol Environ Saf. 2015 Jun;116:59-67 [PMID: 25768423]
  11. Toxins (Basel). 2015 Apr 09;7(4):1206-34 [PMID: 25860160]
  12. Sci Total Environ. 2020 Mar 1;706:135713 [PMID: 31791765]
  13. Int J Mol Med. 2019 Jul;44(1):3-15 [PMID: 31115493]
  14. Pol J Vet Sci. 2012;15(3):531-5 [PMID: 23214375]
  15. Trends Cell Biol. 1995 Jan;5(1):21-6 [PMID: 14731429]
  16. Aquat Toxicol. 2005 Apr 30;72(3):261-71 [PMID: 15820106]
  17. Toxicol Lett. 2015 Jun 1;235(2):61-6 [PMID: 25827405]
  18. Adv Exp Med Biol. 2008;619:675-732 [PMID: 18461789]
  19. Fish Shellfish Immunol. 2015 Apr;43(2):510-9 [PMID: 25655324]
  20. Toxicon. 2003 Jul;42(1):85-9 [PMID: 12893065]
  21. Toxicol Rep. 2016 Jan 15;3:180-189 [PMID: 28959538]
  22. Harmful Algae. 2016 Jun;56:77-90 [PMID: 28073498]
  23. Toxicon. 2018 Jun 15;148:7-15 [PMID: 29621526]
  24. Environ Toxicol Chem. 2017 Mar;36(3):645-654 [PMID: 27505279]
  25. Vet Hum Toxicol. 1987 Apr;29(2):153-4 [PMID: 3107204]
  26. Ecotoxicol Environ Saf. 2005 Jul;61(3):353-60 [PMID: 15922801]
  27. Toxicology. 2013 May 10;307:95-102 [PMID: 23032575]
  28. Aquat Toxicol. 2019 Jul;212:214-221 [PMID: 31132739]
  29. Fish Shellfish Immunol. 2014 Apr;37(2):278-85 [PMID: 24594009]
  30. Environ Toxicol Chem. 2020 Mar;39(3):648-658 [PMID: 31858643]
  31. J Toxicol Environ Health A. 2019;82(21):1113-1119 [PMID: 31818208]
  32. Ecotoxicol Environ Saf. 2019 Jul 15;175:236-242 [PMID: 30903879]
  33. Toxins (Basel). 2019 Sep 12;11(9): [PMID: 31547379]
  34. Nature. 1980 Apr 10;284(5756):555-6 [PMID: 6245367]
  35. Arch Toxicol. 2019 Sep;93(9):2429-2481 [PMID: 31350576]
  36. J Food Biochem. 2020 Mar;44(3):e13145 [PMID: 31960481]
  37. Fish Shellfish Immunol. 2008 Dec;25(6):710-7 [PMID: 19004643]
  38. Chemosphere. 2014 Feb;96:146-54 [PMID: 24184047]
  39. Toxins (Basel). 2019 Jan 15;11(1): [PMID: 30650515]
  40. Folia Biol (Praha). 2005;51(3):62-7 [PMID: 16045237]
  41. Toxicol In Vitro. 2015 Aug;29(5):926-32 [PMID: 25863213]
  42. Chemosphere. 2012 Sep;89(1):38-43 [PMID: 22546629]
  43. Ecotoxicol Environ Saf. 2015 Oct;120:93-101 [PMID: 26046835]

Word Cloud

Created with Highcharts 10.0.0ANTX-alymphocytesfishexposure0resultsshowedapoptosis01glutathioneAlthoughneurotoxicityaquaticcandestroyclearlydemonstratedexposed1mg/L12h89respectivelyinducedgroupoxidativestressantioxidantsystemHazardousanatoxin-aproducedfreshwateralgalbloomsworldwidegreatlyincreasesriskconsumershowswidespreadanimalslittleknownmechanismactionbiotransformationbiologicalsystemsespeciallyimmunobiologicalmodelsstudytransmissionelectronmicroscopyinducingcytoplasmicconcentrationvacuolationswollenmitochondriaDNAfragmentationsladderpatternagarosegelelectrophoresiscausedFlowcytometryapoptoticpercentage10reached182239233558%significantincreasereactiveoxygenspeciesROSmalonaldehydeMDAactivitiessuperoxidedismutaseSODcatalaseCATreductaseGRperoxidaseGPxGSHcontentANTX-a-treateddecreasedsignificantly41466754%comparedcontrol<observationsdose-dependentsuggestedinducelymphocyteviaintracellularshorttimeBesidesmayalsotoxicimmuneevenenvironmentallyrelevantconcentrationspotentialhealthrisksorganismsrequiresattentionNeurotoxicAnatoxin-aCanAlsoExertImmunotoxicityInductionApoptosisLymphocytesExposedEnvironmentallyRelevantConcentrationsenzymes

Similar Articles

Cited By