Antimicrobial peptides: Application informed by evolution.

Brian P Lazzaro, Michael Zasloff, Jens Rolff
Author Information
  1. Brian P Lazzaro: Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA. ORCID
  2. Michael Zasloff: MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA.
  3. Jens Rolff: Freie Universität Berlin, Evolutionary Biology, Institut für Biologie, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany. jens.rolff@fu-berlin.de. ORCID

Abstract

Antimicrobial peptides (AMPs) are essential components of immune defenses of multicellular organisms and are currently in development as anti-infective drugs. AMPs have been classically assumed to have broad-spectrum activity and simple kinetics, but recent evidence suggests an unexpected degree of specificity and a high capacity for synergies. Deeper evaluation of the molecular evolution and population genetics of AMP genes reveals more evidence for adaptive maintenance of polymorphism in AMP genes than has previously been appreciated, as well as adaptive loss of AMP activity. AMPs exhibit pharmacodynamic properties that reduce the evolution of resistance in target microbes, and AMPs may synergize with one another and with conventional antibiotics. Both of these properties make AMPs attractive for translational applications. However, if AMPs are to be used clinically, it is crucial to understand their natural biology in order to lessen the risk of collateral harm and avoid the crisis of resistance now facing conventional antibiotics.

References

  1. PLoS Pathog. 2014 Oct 09;10(10):e1004445 [PMID: 25299705]
  2. Science. 2010 Feb 26;327(5969):1122-6 [PMID: 20185722]
  3. Sci Rep. 2016 Nov 07;6:36617 [PMID: 27819351]
  4. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160603]
  5. Trends Microbiol. 2017 Sep;25(9):703-712 [PMID: 28549825]
  6. J Biol Chem. 2004 Apr 9;279(15):14853-9 [PMID: 14744858]
  7. J Mol Evol. 2007 Nov;65(5):605-15 [PMID: 17938991]
  8. Front Immunol. 2019 Nov 08;10:2620 [PMID: 31781114]
  9. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):E11988-E11995 [PMID: 30559213]
  10. mBio. 2017 Apr 4;8(2): [PMID: 28377525]
  11. Sci Rep. 2016 Nov 09;6:36692 [PMID: 27827460]
  12. Nat Microbiol. 2018 Dec;3(12):1339-1345 [PMID: 30323252]
  13. Cell Mol Life Sci. 2017 Feb;74(4):663-682 [PMID: 27557668]
  14. Science. 2012 Jul 27;337(6093):477-81 [PMID: 22722251]
  15. Nat Genet. 2007 Dec;39(12):1461-8 [PMID: 17987029]
  16. Cell Mol Life Sci. 2011 Jul;68(13):2243-54 [PMID: 21560069]
  17. PLoS Biol. 2013;11(4):e1001540 [PMID: 23630452]
  18. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  19. Biomaterials. 2013 Jul;34(22):5453-64 [PMID: 23623325]
  20. Science. 2007 Jun 22;316(5832):1738-43 [PMID: 17588928]
  21. Genome Biol Evol. 2014 Jan;6(1):76-93 [PMID: 24407854]
  22. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12590-5 [PMID: 11606746]
  23. Genetics. 2001 Oct;159(2):659-71 [PMID: 11606542]
  24. Mol Ecol. 2014 Jun;23(12):3000-12 [PMID: 24805928]
  25. Sci Transl Med. 2018 Jan 10;10(423): [PMID: 29321257]
  26. PLoS One. 2015 Aug 06;10(8):e0132701 [PMID: 26248029]
  27. Dev Comp Immunol. 2012 Mar;36(3):540-6 [PMID: 22001126]
  28. PeerJ. 2015 May 21;3:e976 [PMID: 26038731]
  29. J Evol Biol. 2005 Nov;18(6):1387-94 [PMID: 16313451]
  30. PLoS One. 2013 Oct 18;8(10):e76521 [PMID: 24204634]
  31. Elife. 2019 Feb 26;8: [PMID: 30803481]
  32. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160593]
  33. Microbiology (Reading). 2003 Jun;149(Pt 6):1367-1375 [PMID: 12777478]
  34. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  35. Mol Divers. 2006 Nov;10(4):575-84 [PMID: 16969721]
  36. Proc Biol Sci. 2018 Mar 14;285(1874): [PMID: 29540517]
  37. Dev Comp Immunol. 2018 Apr;81:193-203 [PMID: 29203331]
  38. BMC Evol Biol. 2017 Dec 15;17(1):255 [PMID: 29246101]
  39. Proc Biol Sci. 2006 Jan 22;273(1583):251-6 [PMID: 16555795]
  40. J Evol Biol. 2010 Dec;23(12):2726-30 [PMID: 21121085]
  41. Nature. 2019 Dec;576(7787):452-458 [PMID: 31645764]
  42. Clin Microbiol Infect. 2008 Sep;14(9):816-27 [PMID: 18844682]
  43. Oncotarget. 2017 Jul 11;8(28):46635-46651 [PMID: 28422728]
  44. Nat Rev Microbiol. 2006 Jul;4(7):529-36 [PMID: 16778838]
  45. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  46. Nat Rev Microbiol. 2006 Jul;4(7):556-62 [PMID: 16778840]
  47. Genetics. 1998 Sep;150(1):157-71 [PMID: 9725836]
  48. Nat Struct Mol Biol. 2017 Sep;24(9):752-757 [PMID: 28741611]
  49. Nat Ecol Evol. 2017 Aug;1(8):1160-1167 [PMID: 29046583]
  50. Sci Rep. 2017 Oct 13;7(1):13153 [PMID: 29030606]
  51. Insect Biochem Mol Biol. 2019 Jul;110:60-68 [PMID: 31051236]
  52. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160596]
  53. J Mol Biol. 2016 Aug 28;428(17):3355-71 [PMID: 27170548]
  54. Sci Rep. 2019 Mar 4;9(1):3331 [PMID: 30833614]
  55. Nat Microbiol. 2019 Mar;4(3):447-458 [PMID: 30559406]
  56. Lancet Infect Dis. 2016 Feb;16(2):239-51 [PMID: 26795692]
  57. J Biomed Biotechnol. 2009;2009:315423 [PMID: 19888430]
  58. Evol Appl. 2014 Sep;7(8):905-12 [PMID: 25469169]
  59. EBioMedicine. 2015 Jun 10;2(7):690-8 [PMID: 26288841]
  60. Science. 2011 Oct 21;334(6054):362-5 [PMID: 22021855]
  61. Science. 2012 Aug 31;337(6098):1107-11 [PMID: 22936781]
  62. Antimicrob Agents Chemother. 2016 Jan 04;60(3):1717-24 [PMID: 26729502]
  63. Science. 2015 Jan 9;347(6218):170-5 [PMID: 25574022]
  64. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160595]
  65. Nat Rev Immunol. 2016 May;16(5):321-34 [PMID: 27087664]
  66. mBio. 2019 Oct 22;10(5): [PMID: 31641083]
  67. Lancet. 2016 Jan 9;387(10014):176-87 [PMID: 26603922]
  68. J Biol Chem. 2014 Mar 28;289(13):9172-81 [PMID: 24558045]
  69. Curr Opin Microbiol. 2008 Jun;11(3):284-9 [PMID: 18555739]
  70. Genome Biol. 2008;9(9):R143 [PMID: 18817538]
  71. Sci Transl Med. 2013 Sep 25;5(204):204ra132 [PMID: 24068739]
  72. Nat Commun. 2016 Oct 03;7:13002 [PMID: 27694971]
  73. Nat Rev Microbiol. 2011 May;9(5):356-68 [PMID: 21423246]
  74. Pharmacol Rev. 1995 Jun;47(2):331-85 [PMID: 7568331]
  75. Antimicrob Agents Chemother. 2001 May;45(5):1558-60 [PMID: 11302828]
  76. Proc Biol Sci. 2015 May 7;282(1806):20150293 [PMID: 25833860]
  77. Mol Ecol. 2017 Oct;26(19):5334-5343 [PMID: 28762573]
  78. Nat Nanotechnol. 2010 Apr;5(4):280-5 [PMID: 20228787]
  79. Evolution. 2015 Feb;69(2):431-46 [PMID: 25403856]
  80. Genome Biol Evol. 2019 Sep 1;11(9):2691-2701 [PMID: 31504505]
  81. PLoS Pathog. 2011 Jul;7(7):e1002158 [PMID: 21811410]
  82. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3730-8 [PMID: 24003149]
  83. J Antimicrob Chemother. 2017 Jan;72(1):115-127 [PMID: 27650186]
  84. Microb Biotechnol. 2018 Nov;11(6):1027-1036 [PMID: 29488347]
  85. Nat Microbiol. 2018 Jun;3(6):718-731 [PMID: 29795541]
  86. Eur J Biochem. 1995 Mar 1;228(2):257-64 [PMID: 7705337]
  87. Curr Biol. 2016 Jan 25;26(2):257-262 [PMID: 26776733]
  88. Plant Physiol. 1995 Aug;108(4):1353-8 [PMID: 7659744]
  89. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  90. Nat Commun. 2019 Oct 4;10(1):4538 [PMID: 31586049]
  91. Nucleic Acids Res. 2016 Mar 18;44(5):2439-50 [PMID: 26809677]
  92. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160594]
  93. mBio. 2017 Aug 1;8(4): [PMID: 28765224]
  94. Mol Immunol. 2009 Feb;46(4):516-22 [PMID: 18962895]
  95. Mol Biol Evol. 2016 Dec;33(12):3075-3087 [PMID: 27524825]
  96. PLoS Genet. 2006 Apr;2(4):e64 [PMID: 16683038]
  97. J Exp Bot. 2018 Oct 12;69(21):4997-5011 [PMID: 30099553]

Grants

  1. R01 AI141385/NIAID NIH HHS
  2. /European Research Council

MeSH Term

Animals
Anti-Bacterial Agents
Antimicrobial Cationic Peptides
Drosophila Proteins
Drug Resistance, Bacterial
Drug Synergism
Evolution, Molecular
Humans
Polymorphism, Genetic
Translational Research, Biomedical

Chemicals

Anti-Bacterial Agents
Antimicrobial Cationic Peptides
DptA protein, Drosophila
Drosophila Proteins

Word Cloud

Created with Highcharts 10.0.0AMPsevolutionAMPAntimicrobialactivityevidencegenesadaptivepropertiesresistanceconventionalantibioticspeptidesessentialcomponentsimmunedefensesmulticellularorganismscurrentlydevelopmentanti-infectivedrugsclassicallyassumedbroad-spectrumsimplekineticsrecentsuggestsunexpecteddegreespecificityhighcapacitysynergiesDeeperevaluationmolecularpopulationgeneticsrevealsmaintenancepolymorphismpreviouslyappreciatedwelllossexhibitpharmacodynamicreducetargetmicrobesmaysynergizeoneanothermakeattractivetranslationalapplicationsHoweverusedclinicallycrucialunderstandnaturalbiologyorderlessenriskcollateralharmavoidcrisisnowfacingpeptides:Applicationinformed

Similar Articles

Cited By