Observation of the molecular response to light upon photoexcitation.
Haiwang Yong, Nikola Zotev, Jennifer M Ruddock, Brian Stankus, Mats Simmermacher, Andrés Moreno Carrascosa, Wenpeng Du, Nathan Goff, Yu Chang, Darren Bellshaw, Mengning Liang, Sergio Carbajo, Jason E Koglin, Joseph S Robinson, Sébastien Boutet, Michael P Minitti, Adam Kirrander, Peter M Weber
Author Information
Haiwang Yong: Department of Chemistry, Brown University, Providence, RI, 02912, USA. ORCID
Nikola Zotev: EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
Jennifer M Ruddock: Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Brian Stankus: Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Mats Simmermacher: EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
Andrés Moreno Carrascosa: EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
Wenpeng Du: Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Nathan Goff: Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Yu Chang: Department of Chemistry, Brown University, Providence, RI, 02912, USA.
Darren Bellshaw: EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
Mengning Liang: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Sergio Carbajo: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. ORCID
Jason E Koglin: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. ORCID
Joseph S Robinson: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. ORCID
Sébastien Boutet: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
Michael P Minitti: SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. ORCID
Adam Kirrander: EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK. adam.kirrander@ed.ac.uk. ORCID
Peter M Weber: Department of Chemistry, Brown University, Providence, RI, 02912, USA. peter_weber@brown.edu. ORCID
When a molecule interacts with light, its electrons can absorb energy from the electromagnetic field by rapidly rearranging their positions. This constitutes the first step of photochemical and photophysical processes that include primary events in human vision and photosynthesis. Here, we report the direct measurement of the initial redistribution of electron density when the molecule 1,3-cyclohexadiene (CHD) is optically excited. Our experiments exploit the intense, ultrashort hard x-ray pulses of the Linac Coherent Light Source (LCLS) to map the change in electron density using ultrafast x-ray scattering. The nature of the excited electronic state is identified with excellent spatial resolution and in good agreement with theoretical predictions. The excited state electron density distributions are thus amenable to direct experimental observation.
References
Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014).
[PMID: 24805234]
Minitti, M. P. et al. Imaging molecular motion: femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).
[PMID: 26197134]
Kim, K. H. et al. Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature 518, 385–389 (2015).
[PMID: 25693570]
Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO) in solution. Nature 520, 78–81 (2015).
[PMID: 25832405]
Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).
[PMID: 27151871]
Öström, H. et al. Probing the transition state region in catalytic CO oxidation on Ru. Science 347, 978–982 (2015).
[PMID: 25722407]
Rudenko, A. et al. Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature 546, 129–132 (2017).
[PMID: 28569799]
Stankus, B. et al. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11, 716–721 (2019).
[PMID: 31285542]
Ischenko, A. A., Weber, P. M. & Dwayne Miller, R. J. Capturing chemistry in action with electrons: realization of atomically resolved reaction dynamics. Chem. Rev. 117, 11066–11124 (2017).
[PMID: 28590727]
Ben-Nun, M., Martínez, T. J., Weber, P. M. & Wilson, K. R. Direct imaging of excited electronic states using diffraction techniques: theoretical considerations. Chem. Phys. Lett. 262, 405–414 (1996).
[DOI: 10.1016/0009-2614(96)01108-6]
Debnarova, A., Techert, S. & Schmatz, S. Ab initio studies of ultrafast x-ray scattering of the photodissociation of iodine. J. Chem. Phys. 133, 124309 (2010).
[PMID: 20886934]
Kirrander, A. X-ray diffraction assisted spectroscopy of Rydberg states. J. Chem. Phys. 137, 154310 (2012).
[PMID: 23083168]
Parrish, R. M. & Martínez, T. J. Ab initio computation of rotationally-averaged pump-probe x-ray and electron diffraction signals. J. Chem. Theory Comput. 15, 1523–1537 (2019).
[PMID: 30702882]
Stolow, A. The Three pillars of photo-initiated quantum molecular dynamics. Faraday Discuss. 163, 9–32 (2013).
[PMID: 24020194]
Attar, A. R. et al. Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).
[PMID: 28386006]
Li, W. et al. Visualizing electron rearrangement in space and time during the transition from a molecule to atoms. PNAS 107, 20219–20222 (2010).
[PMID: 21059945]
Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).
[PMID: 26261944]
Gessner, O. et al. Femtosecond multidimensional imaging of a molecular dissociation. Science 311, 219–222 (2006).
[PMID: 16357226]
Yong, H. et al. Determining orientations of optical transition dipole moments using ultrafast x-ray scattering. J. Phys. Chem. Lett. 9, 6556–6562 (2018).
[PMID: 30380873]
Pressprich, M. R., White, M. A. & Coppens, P. Single-crystal x-ray analysis of an electronic excited state: the structure determination of a metastable state of sodium nitroprusside. J. Am. Chem. Soc. 115, 6444–6445 (1993).
[DOI: 10.1021/ja00067a083]
Kim, C. D., Pillet, S., Wu, G., Fullagar, W. K. & Coppens, P. Excited-state structure by time-resolved X-ray diffraction. Acta Cryst. A 58, 133–137 (2002).
[DOI: 10.1107/S0108767301017986]
Biasin, E. et al. Femtosecond x-ray scattering study of ultrafast photoinduced structural dynamics in solvated [Co(terpy)2]2. Phys. Rev. Lett. 117, 013002 (2016).
[PMID: 27419566]
Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: the case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).
[PMID: 21054174]
Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).
[PMID: 30988415]
Pemberton, C. C., Zhang, Y., Salta, K., Kirrander, A. & Weber, P. M. From the (1B) spectroscopic state to the photochemical product of the ultrafast ring-opening of 1,3-cyclohexadiene: a spectral observation of the complete reaction path. J. Phys. Chem. A 119, 8832–8845 (2015).
[PMID: 26192201]
Merchán, M. et al. Electronic spectra of 1,4-cyclohexadiene and 1,3-cyclohexadiene: a combined experimental and theoretical investigation. J. Phys. Chem. A 103, 5468–5476 (1999).
[DOI: 10.1021/jp991266z]
Bühler, C. C., Minitti, M. P., Deb, S., Bao, J. & Weber, P. M. Ultrafast dynamics of 1,3-cyclohexadiene in highly excited states. J. Atom. Mol. Phys. 2011, 637593 (2011).
Emma, P. et al. First lasing and operation of an Ångström-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010).
[DOI: 10.1038/nphoton.2010.176]
Lorenz, U., Møller, K. B. & Henriksen, N. E. On the interpretation of time-resolved anisotropic diffraction patterns. New J. Phys. 12, 113022 (2010).
[DOI: 10.1088/1367-2630/12/11/113022]
Budarz, J. M. et al. Observation of femtosecond molecular dynamics via pump-probe gas phase x-ray scattering. J. Phys. B. Mol. Opt. Phys. 49, 034001 (2016).
[DOI: 10.1088/0953-4075/49/3/034001]
Northey, T., Zotev, N. & Kirrander, A. Ab initio calculation of molecular diffraction. J. Chem. Theory Comput. 10, 4911–4920 (2014).
[PMID: 26584376]
Northey, T., Carrascosa, A. M., Schäfer, S. & Kirrander, A. Elastic x-ray scattering from state-selected molecules. J. Chem. Phys. 145, 154304 (2016).
[PMID: 27782487]
Ruddock, J. M. et al. Simplicity beneath complexity: counting molecular electrons reveals transients and kinetics of photodissociation reactions. Angew. Chem. Int. Ed. 58, 6371–6375 (2019).
[DOI: 10.1002/anie.201902228]
Halavanau, A., Decker, F.-J., Emma, C., Sheppard, J. & Pellegrini, C. Very high brightness and power LCLS-II hard X-ray pulses. J. Synchrotron Radiat. 26, 635–646 (2019).
[PMID: 31074426]
Carrascosa, A. M., Yong, H., Crittenden, D. L., Weber, P. M. & Kirrander, A. Ab initio calculation of total x-ray scattering from molecules. J. Chem. Theory Comput. 15, 2836–2846 (2019).
[DOI: 10.1021/acs.jctc.9b00056]
Yong, H. et al. Scattering off molecules far from equilibrium. J. Chem. Phys. 151, 084301 (2019).
[PMID: 31470697]
Liang, M. et al. The coherent X-ray imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 514–519 (2015).
[PMID: 25931062]
Kaufmann, K., Baumeister, W. & Jungen, M. Universal gaussian basis sets for an optimum representation of Rydberg and continuum wavefunctions. J. Phys. B. Mol. Opt. Phys. 22, 2223–2240 (1989).
[DOI: 10.1088/0953-4075/22/14/007]
Werner, H. J., Knowles, P. J., Knizia, G., Manby, F. R. & Schütz, M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 242–253 (2012).
[DOI: 10.1002/wcms.82]
Zotev, N. et al. Excited electronic states in total isotropic scattering from molecules. J. Chem. Theory Comp. 16, 2594–2605 (2020).
[DOI: 10.1021/acs.jctc.9b00670]
Prince, E. International Tables for Crystallography. Mathematical, Physical and Chemical Tables 3rd edn, Vol. C (Springer, Dordrecht, 2006).