Perceptual rivalry across animal species.

Olivia Carter, Bruno van Swinderen, David A Leopold, Shaun P Collin, Alexander Maier
Author Information
  1. Olivia Carter: Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia. ORCID
  2. Bruno van Swinderen: Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia. ORCID
  3. David A Leopold: National Institute of Mental Health, Bethesda, Maryland, USA. ORCID
  4. Shaun P Collin: School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia. ORCID
  5. Alexander Maier: Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA. ORCID

Abstract

This review in memoriam of Jack Pettigrew provides an overview of past and current research into the phenomenon of multistable perception across multiple animal species. Multistable perception is characterized by two or more perceptual interpretations spontaneously alternating, or rivaling, when animals are exposed to stimuli with inherent sensory ambiguity. There is a wide array of ambiguous stimuli across sensory modalities, ranging from the configural changes observed in simple line drawings, such as the famous Necker cube, to the alternating perception of entire visual scenes that can be instigated by interocular conflict. The latter phenomenon, called binocular rivalry, in particular caught the attention of the late Jack Pettigrew, who combined his interest in the neuronal basis of perception with a unique comparative biological approach that considered ambiguous sensation as a fundamental problem of sensory systems that has shaped the brain throughout evolution. Here, we examine the research findings on visual perceptual alternation and suppression in a wide variety of species including insects, fish, reptiles, and primates. We highlight several interesting commonalities across species and behavioral indicators of perceptual alternation. In addition, we show how the comparative approach provides new avenues for understanding how the brain suppresses opposing sensory signals and generates alternations in perceptual dominance.

Keywords

References

  1. Curr Biol. 1999 Apr 22;9(8):421-4 [PMID: 10226026]
  2. PLoS Comput Biol. 2013;9(3):e1002991 [PMID: 23555225]
  3. Science. 2007 Mar 16;315(5818):1590-3 [PMID: 17363675]
  4. J Neurosci. 2015 Sep 2;35(35):12127-36 [PMID: 26338324]
  5. J Vis. 2006 Sep 26;6(10):1093-101 [PMID: 17132081]
  6. J Vis. 2008 Aug 13;8(11):7.1-11 [PMID: 18831601]
  7. J Vis. 2005 Oct 05;5(9):668-77 [PMID: 16356077]
  8. Neuron. 2014 Jun 18;82(6):1200-4 [PMID: 24945764]
  9. eNeuro. 2018 Oct 15;5(5): [PMID: 30406190]
  10. J Neurosci. 2001 Jul 1;21(13):4809-21 [PMID: 11425908]
  11. J Cogn Neurosci. 2012 Mar;24(3):531-42 [PMID: 22098264]
  12. J Exp Psychol Anim Learn Cogn. 2015 Jan;41(1):32-8 [PMID: 25706544]
  13. J Cogn Neurosci. 2003 Jul 1;15(5):664-72 [PMID: 12965040]
  14. Schizophr Res. 2019 May;207:48-57 [PMID: 29685421]
  15. Trends Cogn Sci. 1999 Jul;3(7):254-264 [PMID: 10377540]
  16. Science. 1989 Aug 18;245(4919):761-3 [PMID: 2772635]
  17. Curr Biol. 2005 Jun 7;15(11):R412-3 [PMID: 15936259]
  18. Learn Mem. 2015 May 15;22(6):294-8 [PMID: 25979991]
  19. J Vis. 2012 Mar 08;12(3):8 [PMID: 22408039]
  20. Curr Opin Insect Sci. 2016 Jun;15:9-15 [PMID: 27436727]
  21. J Vis. 2018 Nov 1;18(12):1 [PMID: 30383213]
  22. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8378-83 [PMID: 12034865]
  23. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2664-8 [PMID: 20133779]
  24. Nat Neurosci. 2017 Aug;20(8):1104-1113 [PMID: 28604683]
  25. Neuron. 2012 Mar 22;73(6):1083-99 [PMID: 22445337]
  26. Neuron. 2003 Sep 11;39(6):1043-52 [PMID: 12971902]
  27. Curr Biol. 1999 Apr 22;9(8):R286-8 [PMID: 10226022]
  28. J Neurosci. 2002 Jul 15;22(14):6195-207 [PMID: 12122078]
  29. Nature. 1996 Feb 8;379(6565):549-53 [PMID: 8596635]
  30. Vision Res. 2019 Sep;162:1-7 [PMID: 31254533]
  31. Science. 1964 Dec 4;146(3649):1325-7 [PMID: 14207465]
  32. J Neurosci. 2010 Jan 20;30(3):1003-14 [PMID: 20089909]
  33. Clin Exp Optom. 2005 Jan;88(1):39-45 [PMID: 15658925]
  34. Nat Neurosci. 2005 Oct;8(10):1380-5 [PMID: 16136038]
  35. Nat Neurosci. 2017 Oct;20(10):1395-1403 [PMID: 28869583]
  36. Proc Biol Sci. 1998 Nov 22;265(1411):2141-8 [PMID: 9872002]
  37. Vision Res. 1999 Oct;39(26):4341-53 [PMID: 10789428]
  38. Proc Biol Sci. 2020 Feb 26;287(1921):20200115 [PMID: 32097593]
  39. Soc Cogn Affect Neurosci. 2014 Feb;9(2):133-40 [PMID: 23051897]
  40. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15214-8 [PMID: 18809923]
  41. Curr Biol. 2008 Jul 22;18(14):1050-4 [PMID: 18635355]
  42. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14499-503 [PMID: 14612564]
  43. Nature. 2001 Jun 14;411(6839):798-801 [PMID: 11459058]
  44. Behav Neurosci. 1999 Jun;113(3):451-64 [PMID: 10443773]
  45. Vision Res. 2015 Apr;109(Pt A):20-37 [PMID: 25749677]
  46. Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5620-5 [PMID: 17369363]
  47. Trends Neurosci. 1992 Jan;15(1):1-3 [PMID: 1374949]
  48. J Vis. 2006 Sep 21;6(10):1068-78 [PMID: 17132078]
  49. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3408-13 [PMID: 9096407]
  50. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1669-73 [PMID: 9990082]
  51. Curr Biol. 2006 Jul 11;16(13):1351-7 [PMID: 16824924]
  52. Nature. 2015 May 14;521(7551):186-91 [PMID: 25971509]
  53. Am J Optom Physiol Opt. 1982 Jul;59(7):535-55 [PMID: 7124893]
  54. Neuron. 2012 Jun 7;74(5):924-35 [PMID: 22681695]
  55. Science. 1998 Jun 19;280(5371):1930-4 [PMID: 9632390]
  56. Trends Cogn Sci. 2006 Nov;10(11):502-11 [PMID: 16997612]
  57. Curr Biol. 2010 Aug 10;20(15):1362-7 [PMID: 20598538]
  58. Optom Wkly. 1962 Nov 22;53:2311-5 [PMID: 14000225]
  59. J Exp Biol. 2002 May;205(Pt 9):1241-52 [PMID: 11948201]
  60. Neuron. 1998 Oct;21(4):753-9 [PMID: 9808462]
  61. Vision Res. 1993 Oct;33(15):2057-64 [PMID: 8266647]
  62. Psychol Med. 2003 May;33(4):683-92 [PMID: 12785470]
  63. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17178-83 [PMID: 16282374]
  64. Nat Neurosci. 2000 Nov;3(11):1153-9 [PMID: 11036274]
  65. Nat Neurosci. 2007 Aug;10(8):1048-54 [PMID: 17632508]
  66. Psychophysiology. 2009 Nov;46(6):1208-15 [PMID: 19674396]
  67. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8337-44 [PMID: 23610414]
  68. J Neurosci. 2012 Mar 14;32(11):3949-53 [PMID: 22423115]
  69. Vision Res. 2010 Oct 12;50(21):2137-41 [PMID: 20705083]
  70. Psychopharmacology (Berl). 2007 Dec;195(3):415-24 [PMID: 17874073]
  71. Front Psychol. 2017 Jan 05;7:2008 [PMID: 28105021]
  72. Curr Biol. 1999 Apr 22;9(8):R272-3 [PMID: 10226034]
  73. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1801-18 [PMID: 9854253]
  74. Conscious Cogn. 2011 Dec;20(4):1835-41 [PMID: 21764331]
  75. Neuron. 2004 Apr 8;42(1):163-72 [PMID: 15066273]
  76. PLoS Comput Biol. 2013;9(2):e1002891 [PMID: 23468601]
  77. PLoS One. 2016 Feb 05;11(2):e0148208 [PMID: 26848852]
  78. Neuropsychopharmacology. 2005 Jun;30(6):1154-62 [PMID: 15688092]
  79. Psychon Bull Rev. 2012 Apr;19(2):225-31 [PMID: 22237418]
  80. J Neurophysiol. 2009 Dec;102(6):3191-202 [PMID: 19812296]
  81. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7230-5 [PMID: 21482795]
  82. PLoS Biol. 2018 Feb 13;16(2):e2003113 [PMID: 29438378]
  83. J Comp Neurol. 2020 Dec 1;528(17):3171-3197 [PMID: 32374025]
  84. Nat Neurosci. 2002 Jun;5(6):605-9 [PMID: 11992115]
  85. Vision Res. 1984;24(5):471-8 [PMID: 6740966]
  86. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):17048-52 [PMID: 17075055]
  87. Nat Rev Neurosci. 2002 Jan;3(1):13-21 [PMID: 11823801]
  88. Br J Psychol. 1967 May;58(1):143-5 [PMID: 5582864]
  89. Nat Neurosci. 2003 Jun;6(6):579-86 [PMID: 12717438]
  90. J Neurosci. 2010 Jul 28;30(30):10039-47 [PMID: 20668188]
  91. Naturwissenschaften. 1983 Feb;70(2):70-8 [PMID: 6843680]
  92. Cereb Cortex. 2006 Jul;16(7):929-40 [PMID: 16151175]
  93. Nat Neurosci. 2000 Jul;3(7):716-23 [PMID: 10862705]
  94. Genetics. 2017 Apr;205(4):1373-1397 [PMID: 28360128]
  95. J Neurosci. 2004 Mar 24;24(12):2898-904 [PMID: 15044528]
  96. Curr Biol. 2004 Sep 21;14(18):1670-4 [PMID: 15380070]
  97. Psychopharmacology (Berl). 2004 Apr;173(1-2):79-87 [PMID: 14712339]
  98. PLoS One. 2010 Dec 30;5(12):e14455 [PMID: 21209935]
  99. Nature. 1996 Feb 8;379(6565):485-6 [PMID: 8596623]
  100. Curr Biol. 2009 Sep 29;19(18):1561-5 [PMID: 19699095]
  101. Conscious Cogn. 2011 Jun;20(2):223-33 [PMID: 20709576]
  102. Front Integr Neurosci. 2012 Oct 19;6:96 [PMID: 23091453]

Grants

  1. R01 EY027402/NEI NIH HHS
  2. Z01 MH002838/Intramural NIH HHS
  3. ZIA MH002838/Intramural NIH HHS

MeSH Term

Animals
Attention
Humans
Optical Illusions
Photic Stimulation
Psychomotor Performance
Species Specificity
Visual Perception

Word Cloud

Created with Highcharts 10.0.0perceptionacrossspeciesperceptualsensoryrivalryJackPettigrewprovidesresearchphenomenonmultistableanimalalternatingstimuliwideambiguousvisualbinocularcomparativeapproachbrainalternationsuppressionfishreviewmemoriamoverviewpastcurrentmultipleMultistablecharacterizedtwointerpretationsspontaneouslyrivalinganimalsexposedinherentambiguityarraymodalitiesrangingconfiguralchangesobservedsimplelinedrawingsfamousNeckercubeentirescenescaninstigatedinterocularconflictlattercalledparticularcaughtattentionlatecombinedinterestneuronalbasisuniquebiologicalconsideredsensationfundamentalproblemsystemsshapedthroughoutevolutionexaminefindingsvarietyincludinginsectsreptilesprimateshighlightseveralinterestingcommonalitiesbehavioralindicatorsadditionshownewavenuesunderstandingsuppressesopposingsignalsgeneratesalternationsdominancePerceptualDrosophilaprimate

Similar Articles

Cited By