Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.

Kun-Hsing Yu, Feiran Wang, Gerald J Berry, Christopher Ré, Russ B Altman, Michael Snyder, Isaac S Kohane
Author Information
  1. Kun-Hsing Yu: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.
  2. Feiran Wang: Department of Electrical Engineering, Stanford University, Stanford, California, USA.
  3. Gerald J Berry: Department of Pathology, Stanford University, Stanford, California, USA.
  4. Christopher Ré: Department of Computer Science, Stanford University, Stanford, California, USA.
  5. Russ B Altman: Biomedical Informatics Program, Stanford University, Stanford, California, USA.
  6. Michael Snyder: Department of Genetics, Stanford University, Stanford, California, USA.
  7. Isaac S Kohane: Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.

Abstract

OBJECTIVE: Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been systematically studied. To bridge this gap, we developed a quantitative histopathology analytic framework to identify the types and gene expression subtypes of non-small cell lung cancer objectively.
MATERIALS AND METHODS: We processed whole-slide histopathology images of lung adenocarcinoma (n = 427) and lung squamous cell carcinoma patients (n = 457) in the Cancer Genome Atlas. We built convolutional neural networks to classify histopathology images, evaluated their performance by the areas under the receiver-operating characteristic curves (AUCs), and validated the results in an independent cohort (n = 125).
RESULTS: To establish neural networks for quantitative image analyses, we first built convolutional neural network models to identify tumor regions from adjacent dense benign tissues (AUCs > 0.935) and recapitulated expert pathologists' diagnosis (AUCs > 0.877), with the results validated in an independent cohort (AUCs = 0.726-0.864). We further demonstrated that quantitative histopathology morphology features identified the major transcriptomic subtypes of both adenocarcinoma and squamous cell carcinoma (P < .01).
DISCUSSION: Our study is the first to classify the transcriptomic subtypes of non-small cell lung cancer using fully automated machine learning methods. Our approach does not rely on prior pathology knowledge and can discover novel clinically relevant histopathology patterns objectively. The developed procedure is generalizable to other tumor types or diseases.

Keywords

References

  1. Nat Med. 2018 Oct;24(10):1559-1567 [PMID: 30224757]
  2. N Engl J Med. 2015 Feb 26;372(9):793-5 [PMID: 25635347]
  3. Lung Cancer. 2006 Apr;52(1):29-36 [PMID: 16476504]
  4. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  5. Nat Commun. 2016 Aug 16;7:12474 [PMID: 27527408]
  6. J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108 [PMID: 23959844]
  7. JAMA. 2017 Dec 12;318(22):2199-2210 [PMID: 29234806]
  8. EBioMedicine. 2018 Jan;27:317-328 [PMID: 29292031]
  9. J Clin Oncol. 2004 Jun 1;22(11):2184-91 [PMID: 15169807]
  10. Histopathology. 2012 Jul;61(1):1-9 [PMID: 21477260]
  11. Clin Cancer Res. 2010 Jan 15;16(2):610-9 [PMID: 20068099]
  12. Am J Surg Pathol. 2008 May;32(5):732-7 [PMID: 18360282]
  13. Sci Transl Med. 2011 Nov 9;3(108):108ra113 [PMID: 22072638]
  14. Arch Pathol Lab Med. 2013 Dec;137(12):1723-32 [PMID: 23738764]
  15. Elife. 2017 Sep 06;6: [PMID: 28876221]
  16. Eur Respir J. 2006 Dec;28(6):1186-9 [PMID: 16899486]
  17. Arch Pathol Lab Med. 2013 Jan;137(1):32-40 [PMID: 22583114]
  18. JAMA. 2016 Dec 13;316(22):2402-2410 [PMID: 27898976]
  19. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  20. Oncologist. 2007 Jun;12(6):713-8 [PMID: 17602060]
  21. BMJ Qual Saf. 2019 Mar;28(3):238-241 [PMID: 30291179]
  22. J Clin Oncol. 2013 Mar 10;31(8):992-1001 [PMID: 23401443]
  23. J Pathol Inform. 2011;2:25 [PMID: 21773056]
  24. Med Image Anal. 2016 Oct;33:170-175 [PMID: 27423409]
  25. Nat Biomed Eng. 2018 Oct;2(10):719-731 [PMID: 31015651]
  26. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  27. Database (Oxford). 2011 Sep 19;2011:bar026 [PMID: 21930502]
  28. J Pathol Inform. 2011;2:36 [PMID: 21886892]
  29. Nature. 2017 Feb 2;542(7639):115-118 [PMID: 28117445]
  30. Mod Pathol. 2015 Aug;28(8):1058-63 [PMID: 26022456]
  31. J Pathol Inform. 2013 Sep 27;4:27 [PMID: 24244884]
  32. Nature. 2010 Apr 15;464(7291):993-8 [PMID: 20393554]
  33. J Thorac Dis. 2014 Oct;6(Suppl 5):S526-36 [PMID: 25349703]
  34. JAMA. 2015 Jun 2;313(21):2119-20 [PMID: 25928209]
  35. Mol Cell Proteomics. 2016 Aug;15(8):2525-36 [PMID: 27099341]
  36. Bioinformatics. 2018 Jan 15;34(2):319-320 [PMID: 28968749]
  37. Cell Syst. 2017 Dec 27;5(6):620-627.e3 [PMID: 29153840]
  38. CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30 [PMID: 26742998]
  39. JAMA. 2016 Dec 13;316(22):2353-2354 [PMID: 27898975]
  40. J Clin Oncol. 2008 Jul 20;26(21):3543-51 [PMID: 18506025]
  41. PLoS One. 2012;7(5):e36530 [PMID: 22590557]
  42. Mayo Clin Proc. 2008 May;83(5):584-94 [PMID: 18452692]
  43. JAMA Intern Med. 2018 Nov 1;178(11):1544-1547 [PMID: 30128552]
  44. Sci Transl Med. 2012 Oct 24;4(157):157ra143 [PMID: 23100629]
  45. IEEE Trans Med Imaging. 2016 May;35(5):1285-98 [PMID: 26886976]
  46. CA Cancer J Clin. 2015 Mar;65(2):87-108 [PMID: 25651787]
  47. Nature. 2012 Sep 27;489(7417):519-25 [PMID: 22960745]
  48. Clin Cancer Res. 2010 Oct 1;16(19):4864-75 [PMID: 20643781]
  49. IEEE Trans Neural Netw. 1997;8(1):98-113 [PMID: 18255614]

Grants

  1. P50 HG007735/NHGRI NIH HHS
  2. U24 CA160036/NCI NIH HHS

MeSH Term

Adenocarcinoma of Lung
Carcinoma, Non-Small-Cell Lung
Carcinoma, Squamous Cell
Humans
Lung Neoplasms
Machine Learning
Neural Networks, Computer
ROC Curve
Transcriptome

Word Cloud

Created with Highcharts 10.0.0celllungcancersubtypeshistopathologyneuralquantitativenon-smallconvolutionalnetworkstranscriptomictypesAUCsdiagnosispatternsdevelopedidentifyobjectivelyimagesadenocarcinomasquamouscarcinomabuiltclassifyvalidatedresultsindependentcohortfirsttumor>0usingmachinelearningpathologyOBJECTIVE:Non-smallleadingcausedeathworldwidehistopathologicalevaluationplaysprimaryroleHowevermorphologicalassociatedmolecularsystematicallystudiedbridgegapanalyticframeworkgeneexpressionMATERIALSANDMETHODS:processedwhole-sliden = 427patientsn = 457CancerGenomeAtlasevaluatedperformanceareasreceiver-operatingcharacteristiccurvesn = 125RESULTS:establishimageanalysesnetworkmodelsregionsadjacentdensebenigntissues935recapitulatedexpertpathologists'877AUCs = 0726-0864demonstratedmorphologyfeaturesidentifiedmajorP <01DISCUSSION:studyfullyautomatedmethodsapproachrelypriorknowledgecandiscovernovelclinicallyrelevantproceduregeneralizablediseasesClassifying

Similar Articles

Cited By