HIKESHI silencing can enhance mild hyperthermia sensitivity in human oral squamous cell carcinoma HSC‑3 cells.

Yoshiaki Tabuchi, Keita Maekawa, Misako Torigoe, Yukihiro Furusawa, Tetsushi Hirano, Satsuki Minagawa, Tatsuya Yunoki, Atsushi Hayashi
Author Information
  1. Yoshiaki Tabuchi: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan.
  2. Keita Maekawa: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan.
  3. Misako Torigoe: Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan.
  4. Yukihiro Furusawa: Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939‑0398, Japan.
  5. Tetsushi Hirano: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan.
  6. Satsuki Minagawa: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan.
  7. Tatsuya Yunoki: Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan.
  8. Atsushi Hayashi: Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan.

Abstract

Hyperthermia (HT) is considered to be of value as a treatment modality in various cancers. However, the acquisition of thermotolerance in cancer cells due to the induction of heat shock proteins (HSPs) makes HT less effective. Recent findings have indicated that heat shock protein nuclear import factor hikeshi (HIKESHI), also referred to as C11orf73, acts as a nuclear import carrier of Hsp70 under heat stress conditions. The aim of the present study was to determine whether knockdown (KD) of HIKESHI by small interfering RNA (siRNA) can potentiate mild HT (MHT) sensitivity in human oral squamous cell carcinoma (OSCC) HSC‑3 cells. The mRNA and protein expression of HIKESHI was found to be markedly suppressed in HSC‑3 cells treated with siRNA for HIKESHI (siHIKE). Silencing HIKESHI significantly decreased the cell viability under MHT conditions (42˚C for 90 min). Immunocytochemical and western blot analyses clearly demonstrated that Hsp70 protein translocated from the cytoplasm to the nucleus under MHT conditions, and this translocation was significantly inhibited in cells treated with siHIKE. Treatment of the cells with MHT transiently increased the phosphorylation level of extracellular signal‑regulated kinase (ERK)2. Furthermore, the phosphorylation was sustained in HIKESHI‑KD cells under MHT conditions, and this sustained phosphorylation was abolished by pretreatment with U0126, an inhibitor of mitogen‑activated protein kinase/ERK. In addition, U0126 significantly decreased the viability of cells treated with the combination of HIKESHI‑KD and MHT. The data of the present study suggest that HIKESHI silencing enhanced the sensitivity of human OSCC HSC‑3 cells to MHT.

References

  1. Oncology. 2007;73(1-2):98-103 [PMID: 18337621]
  2. Apoptosis. 2015 Nov;20(11):1411-9 [PMID: 26354715]
  3. Graefes Arch Clin Exp Ophthalmol. 2015 Mar;253(3):399-407 [PMID: 25471019]
  4. Cancer Res. 1986 Feb;46(2):474-82 [PMID: 3510074]
  5. Int J Radiat Oncol Biol Phys. 1989 Mar;16(3):535-49 [PMID: 2646256]
  6. Anticancer Res. 2019 Mar;39(3):1365-1373 [PMID: 30842170]
  7. Cancer Res. 2014 Jan 15;74(2):412-9 [PMID: 24408923]
  8. Immunology. 2003 Sep;110(1):1-9 [PMID: 12941135]
  9. Mol Med Rep. 2018 Oct;18(4):4138-4146 [PMID: 30106105]
  10. Mol Neurobiol. 2019 Nov;56(11):7267-7283 [PMID: 31016475]
  11. Oncol Rep. 2017 Sep;38(3):1500-1506 [PMID: 28731175]
  12. Mol Cell. 2018 Nov 1;72(3):525-540.e13 [PMID: 30318443]
  13. Lancet Oncol. 2002 Aug;3(8):487-97 [PMID: 12147435]
  14. Genes Cells. 2017 Nov;22(11):968-976 [PMID: 28980748]
  15. Int J Hyperthermia. 2000 May-Jun;16(3):231-45 [PMID: 10830586]
  16. Int J Hyperthermia. 2009 Jun;25(4):258-61 [PMID: 19670094]
  17. Mol Cell Biol. 1993 Mar;13(3):1392-407 [PMID: 8441385]
  18. Lancet. 2000 Apr 1;355(9210):1119-25 [PMID: 10791373]
  19. J Cell Biol. 2000 Jan 10;148(1):7-16 [PMID: 10629214]
  20. J Biol Chem. 1984 Apr 10;259(7):4501-13 [PMID: 6368558]
  21. EMBO J. 1984 Dec 20;3(13):3095-100 [PMID: 6441707]
  22. Oncology. 2002;62(3):234-40 [PMID: 12065871]
  23. Science. 2002 Mar 8;295(5561):1852-8 [PMID: 11884745]
  24. Int J Hyperthermia. 2012;28(6):549-53 [PMID: 22788973]
  25. Annu Rev Genet. 1988;22:631-77 [PMID: 2853609]
  26. Cancer Immunol Immunother. 2006 Mar;55(3):320-8 [PMID: 16133113]
  27. Cell Stress Chaperones. 2009 Jan;14(1):105-11 [PMID: 18663603]
  28. Biochim Biophys Acta. 2015 Jan;1853(1):52-62 [PMID: 25260982]
  29. Toxicol Appl Pharmacol. 2019 Nov 15;383:114777 [PMID: 31626844]
  30. Cell. 2012 Apr 27;149(3):578-89 [PMID: 22541429]
  31. Nat Rev Mol Cell Biol. 2010 Aug;11(8):545-55 [PMID: 20628411]
  32. Sci Rep. 2017 Mar 28;7:44997 [PMID: 28349958]
  33. Int J Mol Med. 2016 Jul;38(1):236-42 [PMID: 27245201]
  34. Eur J Cancer. 2008 Nov;44(17):2546-54 [PMID: 18789678]
  35. J Appl Physiol (1985). 2002 May;92(5):2177-86 [PMID: 11960972]
  36. Int J Hyperthermia. 2010;26(7):612-7 [PMID: 20849256]
  37. Int J Hyperthermia. 1995 Jul-Aug;11(4):459-88 [PMID: 7594802]
  38. Int J Hyperthermia. 2018 Jun;34(4):461-468 [PMID: 28679349]
  39. Cancer Lett. 2013 Jul 10;335(1):52-7 [PMID: 23395971]
  40. BMC Res Notes. 2010 Nov 10;3:294 [PMID: 21067583]
  41. Int J Hyperthermia. 2019;36(1):1024-1039 [PMID: 31621437]
  42. Int J Hyperthermia. 2002 Nov-Dec;18(6):597-608 [PMID: 12537758]
  43. Int J Hyperthermia. 1987 Jul-Aug;3(4):297-305 [PMID: 3668311]
  44. Nat Struct Mol Biol. 2009 Oct;16(10):1026-35 [PMID: 19767751]
  45. Exp Cell Res. 2019 Apr 15;377(1-2):67-74 [PMID: 30776355]
  46. FEBS J. 2010 Oct;277(20):4112-25 [PMID: 20945528]
  47. J Biol Chem. 1998 Mar 27;273(13):7523-8 [PMID: 9516453]
  48. Int J Mol Med. 2012 Mar;29(3):380-6 [PMID: 22179328]

MeSH Term

Blotting, Western
Carcinoma, Squamous Cell
Carrier Proteins
Cell Line, Tumor
Cell Survival
Electrophoresis, Polyacrylamide Gel
HSP70 Heat-Shock Proteins
Humans
Hyperthermia
Mitogen-Activated Protein Kinase 1
Mouth Neoplasms
RNA, Small Interfering
Reverse Transcriptase Polymerase Chain Reaction

Chemicals

Carrier Proteins
HSP70 Heat-Shock Proteins
RNA, Small Interfering
hikeshi protein, human
Mitogen-Activated Protein Kinase 1

Word Cloud

Created with Highcharts 10.0.0cellsHIKESHIMHTproteinconditionsHSC‑3HTheatsensitivityhumancelltreatedsignificantlyphosphorylationshocknuclearimportHsp70presentstudysiRNAcanmildoralsquamouscarcinomaOSCCsiHIKEdecreasedviabilitysustainedHIKESHI‑KDU0126silencingHyperthermiaconsideredvaluetreatmentmodalityvariouscancersHoweveracquisitionthermotolerancecancerdueinductionproteinsHSPsmakeslesseffectiveRecentfindingsindicatedfactorhikeshialsoreferredC11orf73actscarrierstressaimdeterminewhetherknockdownKDsmallinterferingRNApotentiatemRNAexpressionfoundmarkedlysuppressedSilencing42˚C90 minImmunocytochemicalwesternblotanalysesclearlydemonstratedtranslocatedcytoplasmnucleustranslocationinhibitedTreatmenttransientlyincreasedlevelextracellularsignal‑regulatedkinaseERK2Furthermoreabolishedpretreatmentinhibitormitogen‑activatedkinase/ERKadditioncombinationdatasuggestenhancedenhancehyperthermia

Similar Articles

Cited By