Prenatal development of human immunity.

Jong-Eun Park, Laura Jardine, Berthold Gottgens, Sarah A Teichmann, Muzlifah Haniffa
Author Information
  1. Jong-Eun Park: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. ORCID
  2. Laura Jardine: Biosciences Institute, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne NE2 4HH, UK. ORCID
  3. Berthold Gottgens: Department of Haematology, University of Cambridge, Cambridge CB2 2XY, UK. ORCID
  4. Sarah A Teichmann: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. st9@sanger.ac.uk m.a.haniffa@newcastle.ac.uk. ORCID
  5. Muzlifah Haniffa: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. st9@sanger.ac.uk m.a.haniffa@newcastle.ac.uk. ORCID

Abstract

The blood and immune systems develop in parallel during early prenatal life. Waves of hematopoiesis separated in anatomical space and time give rise to circulating and tissue-resident immune cells. Previous observations have relied on animal models, which differ from humans in both their developmental timeline and exposure to microorganisms. Decoding the composition of the human immune system is now tractable using single-cell multi-omics approaches. Large-scale single-cell genomics, imaging technologies, and the Human Cell Atlas initiative have together enabled a systems-level mapping of the developing human immune system and its emergent properties. Although the precise roles of specific immune cells during development require further investigation, the system as a whole displays malleable and responsive properties according to developmental need and environmental challenge.

References

  1. Development. 2008 Aug;135(14):2343-6 [PMID: 18567845]
  2. Nature. 2018 Nov;563(7731):347-353 [PMID: 30429548]
  3. Nat Immunol. 2019 Mar;20(3):301-312 [PMID: 30664737]
  4. Front Immunol. 2018 May 24;9:1014 [PMID: 29881376]
  5. Dev Cell. 2019 Nov 4;51(3):357-373.e5 [PMID: 31607651]
  6. Science. 2006 Jan 6;311(5757):83-7 [PMID: 16322423]
  7. Immunity. 2018 Oct 16;49(4):640-653.e5 [PMID: 30332630]
  8. J Endocrinol. 2006 Mar;188(3):467-80 [PMID: 16522727]
  9. Immunity. 2019 Feb 19;50(2):462-476.e8 [PMID: 30770246]
  10. Nat Commun. 2019 Feb 28;10(1):975 [PMID: 30816112]
  11. Early Hum Dev. 1998 Dec;53(2):129-44 [PMID: 10195706]
  12. Front Immunol. 2019 Oct 18;10:2458 [PMID: 31681331]
  13. Front Immunol. 2016 Jan 06;6:620 [PMID: 26779180]
  14. Nature. 2019 Oct;574(7778):365-371 [PMID: 31597962]
  15. Annu Rev Immunol. 2020 Apr 26;38:727-757 [PMID: 32075461]
  16. J Exp Med. 1988 Sep 1;168(3):1061-80 [PMID: 2459287]
  17. Cell. 2019 Dec 12;179(7):1647-1660.e19 [PMID: 31835037]
  18. Immunity. 2016 Mar 15;44(3):439-449 [PMID: 26982352]
  19. Science. 2010 Dec 17;330(6011):1695-9 [PMID: 21164017]
  20. J Clin Invest. 2013 Sep;123(9):3889-901 [PMID: 23945237]
  21. J Immunol. 2015 Nov 1;195(9):4257-4263 [PMID: 26378073]
  22. J Exp Med. 1995 Apr 1;181(4):1445-58 [PMID: 7699329]
  23. Immunity. 2018 Jun 19;48(6):1160-1171.e5 [PMID: 29858009]
  24. Immunity. 2012 Jan 27;36(1):13-21 [PMID: 22284417]
  25. J Exp Med. 2008 Jun 9;205(6):1331-42 [PMID: 18519648]
  26. Sci Transl Med. 2015 Feb 25;7(276):276ra25 [PMID: 25717098]
  27. Front Immunol. 2019 Aug 14;10:1932 [PMID: 31474997]
  28. Immunity. 2019 Nov 19;51(5):930-948.e6 [PMID: 31604687]
  29. Cell Res. 2019 Nov;29(11):881-894 [PMID: 31501518]
  30. Front Immunol. 2019 Mar 19;10:469 [PMID: 30941128]
  31. Cell. 2018 Aug 23;174(5):1277-1292.e14 [PMID: 30142345]
  32. Nature. 2017 Jun 29;546(7660):662-666 [PMID: 28614294]
  33. Sci Transl Med. 2014 May 28;6(238):238ra72 [PMID: 24871133]
  34. J Immunol. 2006 May 15;176(10):5741-8 [PMID: 16670279]
  35. J Immunol. 1996 Jan 15;156(2):866-72 [PMID: 8543844]
  36. Allergy. 2000 Aug;55(8):688-97 [PMID: 10955693]
  37. Immunity. 2015 Apr 21;42(4):665-78 [PMID: 25902481]
  38. Nat Rev Immunol. 2010 Sep;10(9):664-74 [PMID: 20706277]
  39. Nat Immunol. 2009 Jan;10(1):66-74 [PMID: 19029905]
  40. Immunity. 2017 Dec 19;47(6):1100-1113.e6 [PMID: 29262349]

Grants

  1. MC_PC_17230/Medical Research Council
  2. MC_PC_12009/Medical Research Council
  3. 206328/Z/17/Z/Wellcome Trust
  4. 211276/Wellcome Trust
  5. /Wellcome Trust

MeSH Term

Animals
Bone Marrow
Genomics
Hematopoiesis
Humans
Immune System
Immunity
Liver
Models, Animal
Single-Cell Analysis
Yolk Sac

Word Cloud

Created with Highcharts 10.0.0immunehumansystemcellsdevelopmentalsingle-cellpropertiesdevelopmentbloodsystemsdevelopparallelearlyprenatallifeWaveshematopoiesisseparatedanatomicalspacetimegiverisecirculatingtissue-residentPreviousobservationsreliedanimalmodelsdifferhumanstimelineexposuremicroorganismsDecodingcompositionnowtractableusingmulti-omicsapproachesLarge-scalegenomicsimagingtechnologiesHumanCellAtlasinitiativetogetherenabledsystems-levelmappingdevelopingemergentAlthoughpreciserolesspecificrequireinvestigationwholedisplaysmalleableresponsiveaccordingneedenvironmentalchallengePrenatalimmunity

Similar Articles

Cited By