Identifying Gene Networks Involved in Pathogenicity.

Graham Thomas, Judith M Bain, Susan Budge, Alistair J P Brown, Ryan M Ames
Author Information
  1. Graham Thomas: Biosciences, University of Exeter, Exeter, United Kingdom.
  2. Judith M Bain: Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
  3. Susan Budge: Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
  4. Alistair J P Brown: Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
  5. Ryan M Ames: Biosciences, University of Exeter, Exeter, United Kingdom.

Abstract

is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, , is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.

Keywords

References

  1. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D459-64 [PMID: 16381911]
  2. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  3. Mol Biol Cell. 2008 Jul;19(7):2741-51 [PMID: 18434592]
  4. Eukaryot Cell. 2005 Jul;4(7):1273-86 [PMID: 16002653]
  5. Infect Immun. 2010 Apr;78(4):1650-8 [PMID: 20123707]
  6. EMBO J. 2003 Jun 2;22(11):2668-78 [PMID: 12773383]
  7. mBio. 2013 Apr 09;4(2):e00637-12 [PMID: 23572557]
  8. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  9. Mol Biol Cell. 2008 Mar;19(3):1113-24 [PMID: 18184748]
  10. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  11. J Biosci. 2010 Mar;35(1):119-26 [PMID: 20413916]
  12. Science. 1999 Mar 5;283(5407):1535-8 [PMID: 10066176]
  13. Microorganisms. 2017 Jan 17;5(1): [PMID: 28106722]
  14. Cell Syst. 2019 Mar 27;8(3):267-273.e3 [PMID: 30878356]
  15. PLoS Pathog. 2012 Feb;8(2):e1002525 [PMID: 22359502]
  16. Yeast. 1998 May;14(7):681-6 [PMID: 9639315]
  17. G3 (Bethesda). 2015 Jan 29;5(4):497-505 [PMID: 25636313]
  18. mBio. 2014 Dec 02;5(6):e01874 [PMID: 25467440]
  19. J Biol Chem. 2005 Jan 14;280(2):1051-60 [PMID: 15519997]
  20. Eukaryot Cell. 2004 Oct;3(5):1076-87 [PMID: 15470236]
  21. Mol Cell. 2017 Feb 16;65(4):761-774.e5 [PMID: 28132844]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Sci Transl Med. 2012 Dec 19;4(165):165rv13 [PMID: 23253612]
  24. Fungal Genet Biol. 2006 Aug;43(8):573-82 [PMID: 16730201]
  25. Nat Rev Microbiol. 2017 Feb;15(2):96-108 [PMID: 27867199]
  26. Oncogene. 1998 Feb 26;16(8):967-77 [PMID: 9519870]
  27. PLoS Genet. 2018 Apr 27;14(4):e1007319 [PMID: 29702647]
  28. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  29. Science. 2015 Mar 27;347(6229):1414-6 [PMID: 25814567]
  30. Cell. 2012 Jan 20;148(1-2):126-38 [PMID: 22265407]
  31. FEMS Microbiol Lett. 2005 Apr 1;245(1):25-32 [PMID: 15796975]
  32. PLoS Pathog. 2017 May 18;13(5):e1006290 [PMID: 28542486]
  33. Drug Discov Today. 2009 Feb;14(3-4):214-22 [PMID: 19152839]
  34. Cell. 1997 Sep 5;90(5):939-49 [PMID: 9298905]
  35. Virulence. 2013 Feb 15;4(2):119-28 [PMID: 23302789]
  36. Trends Microbiol. 2010 May;18(5):195-204 [PMID: 20207544]
  37. Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596 [PMID: 27738138]
  38. Science. 1994 Dec 9;266(5191):1723-6 [PMID: 7992058]
  39. Genetics. 2002 Dec;162(4):1573-81 [PMID: 12524333]
  40. Nat Rev Microbiol. 2018 Jan;16(1):19-31 [PMID: 29062072]
  41. Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74 [PMID: 22064862]
  42. BMC Genomics. 2013 Apr 02;14:212 [PMID: 23547856]
  43. Cell. 2014 Apr 24;157(3):534-8 [PMID: 24766803]
  44. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  45. PLoS One. 2013 May 03;8(5):e62670 [PMID: 23658761]
  46. J Infect Dis. 2009 Jul 15;200(2):307-13 [PMID: 19527170]
  47. J Biol Chem. 2004 Sep 24;279(39):40737-47 [PMID: 15262971]
  48. N Engl J Med. 2015 Oct 8;373(15):1445-56 [PMID: 26444731]
  49. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  50. Infect Immun. 2003 Jul;71(7):4045-51 [PMID: 12819094]
  51. EMBO J. 2004 Apr 21;23(8):1845-56 [PMID: 15071502]
  52. Bioinformatics. 2014 Jun 15;30(12):i34-42 [PMID: 24932003]
  53. Nature. 2009 Jun 4;459(7247):657-62 [PMID: 19465905]
  54. Fungal Genet Biol. 2010 Feb;47(2):107-16 [PMID: 19755168]
  55. Microbiology. 2009 Feb;155(Pt 2):413-423 [PMID: 19202089]
  56. Genome Res. 2015 May;25(5):679-89 [PMID: 25858952]
  57. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  58. Science. 2012 May 11;336(6082):647 [PMID: 22582229]
  59. Eukaryot Cell. 2005 Aug;4(8):1493-502 [PMID: 16087754]
  60. Mol Microbiol. 2002 Feb;43(3):571-84 [PMID: 11929516]
  61. Virulence. 2017 Feb 17;8(2):150-158 [PMID: 27268130]
  62. Methods Mol Biol. 2005;290:91-103 [PMID: 15361657]
  63. Microbiology. 2005 Sep;151(Pt 9):2923-2931 [PMID: 16151204]
  64. Mol Microbiol. 2004 Dec;54(5):1335-51 [PMID: 15554973]
  65. Nat Biotechnol. 2013 Jan;31(1):38-45 [PMID: 23242164]
  66. Nat Genet. 2010 Jul;42(7):590-8 [PMID: 20543849]
  67. Nature. 2016 Apr 7;532(7597):64-8 [PMID: 27027296]
  68. G3 (Bethesda). 2017 Nov 6;7(11):3797-3808 [PMID: 28951491]
  69. Mol Biol Cell. 2011 Mar 1;22(5):687-702 [PMID: 21209325]
  70. Trends Microbiol. 2014 Nov;22(11):614-22 [PMID: 25088819]
  71. FEMS Yeast Res. 2009 Aug;9(5):688-700 [PMID: 19473261]
  72. J Exp Biol. 2014 Jan 1;217(Pt 1):144-55 [PMID: 24353214]

Grants

  1. MR/M026663/1/Medical Research Council
  2. MR/M026663/2/Medical Research Council
  3. MR/N006364/2/Medical Research Council

Word Cloud

Created with Highcharts 10.0.0genesnewantifungaldiseasedevelopmentinvolvednetwork-extractedpathogencansystemicinfectionsdrugsgeneprocessesfunctiongeneratetestablehypothesesidentifypotentialtargetsontologyavailabledatacandidatenormalmemberhumanmicrobiomealsoopportunisticcauselife-threateningseverelyimmunocompromizedindividualsDespiteavailabilitymortalityrateshighneededovercometherapeuticchallengesincludingemergencedrugresistanceTargetingknownpathwayssuggestedpromisingavenueantifungalsHowever<30%verifiedexperimentalevidenceproductfullcomplementimportantcurrentlyunknownToolspredictpartiallyuncharacterizedwillthereforehelpemployleveragepubliclytranscriptomicssubsetphenotypicallyscreenedusingdeletionstrainspresentpreliminaryonehyphalimmuneevasionworkdemonstratesutilityontologiespredictingappliedpathogenicsystemsrepresentnovelfirststepidentifyingtherapiesIdentifyingGeneNetworksInvolvedPathogenicityCandidaalbicansPEP8co-expressionnetworkpathogenicity

Similar Articles

Cited By