Exploring the Use of Compound-Induced Transcriptomic Data Generated From Cell Lines to Predict Compound Activity Toward Molecular Targets.

Benoît Baillif, Joerg Wichard, Oscar Méndez-Lucio, David Rouquié
Author Information
  1. Benoît Baillif: Bayer SAS, Bayer CropScience, Sophia Antipolis, France.
  2. Joerg Wichard: Department of Genetic Toxicology, Bayer AG, Berlin, Germany.
  3. Oscar Méndez-Lucio: Bayer SAS, Bayer CropScience, Sophia Antipolis, France.
  4. David Rouquié: Bayer SAS, Bayer CropScience, Sophia Antipolis, France.

Abstract

Pharmaceutical or phytopharmaceutical molecules rely on the interaction with one or more specific molecular targets to induce their anticipated biological responses. Nonetheless, these compounds are also prone to interact with many other non-intended biological targets, also known as off-targets. Unfortunately, off-target identification is difficult and expensive. Consequently, QSAR models predicting the activity on a target have gained importance in drug discovery or in the de-risking of chemicals. However, a restricted number of targets are well characterized and hold enough data to build such models. A good alternative to individual target evaluations is to use integrative evaluations such as transcriptomics obtained from compound-induced gene expression measurements derived from cell cultures. The advantage of these particular experiments is to capture the consequences of the interaction of compounds on many possible molecular targets and biological pathways, without having any constraints concerning the chemical space. In this work, we assessed the value of a large public dataset of compound-induced transcriptomic data, to predict compound activity on a selection of 69 molecular targets. We compared such descriptors with other QSAR descriptors, namely the Morgan fingerprints (similar to extended-connectivity fingerprints). Depending on the target, active compounds could show similar signatures in one or multiple cell lines, whether these active compounds shared similar or different chemical structures. Random forest models using gene expression signatures were able to perform similarly or better than counterpart models built with Morgan fingerprints for 25% of the target prediction tasks. These performances occurred mostly using signatures produced in cell lines showing similar signatures for active compounds toward the considered target. We show that compound-induced transcriptomic data could represent a great opportunity for target prediction, allowing to overcome the chemical space limitation of QSAR models.

Keywords

References

  1. Crit Rev Toxicol. 2015 Feb;45(2):172-83 [PMID: 25615431]
  2. Cancer Cell. 2006 Oct;10(4):331-42 [PMID: 17010674]
  3. Genes (Basel). 2012 Sep;3(3):344-60 [PMID: 22916334]
  4. Nat Commun. 2020 Jan 3;11(1):10 [PMID: 31900408]
  5. Environ Health Perspect. 2019 Apr;127(4):47002 [PMID: 30964323]
  6. BMC Bioinformatics. 2017 Jul 27;18(1):356 [PMID: 28750623]
  7. PLoS One. 2019 Sep 27;14(9):e0222165 [PMID: 31560691]
  8. PLoS Comput Biol. 2018 Dec 7;14(12):e1006651 [PMID: 30532261]
  9. J Med Chem. 2014 Jun 26;57(12):4977-5010 [PMID: 24351051]
  10. Cell Chem Biol. 2018 May 17;25(5):611-618.e3 [PMID: 29503208]
  11. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  12. Mol Biol Cell. 2017 Nov 1;28(22):2924-2931 [PMID: 29084910]
  13. Nature. 2018 Aug;560(7718):325-330 [PMID: 30089904]
  14. Science. 2006 Sep 29;313(5795):1929-35 [PMID: 17008526]
  15. J Chem Inf Model. 2019 Mar 25;59(3):1163-1171 [PMID: 30840449]
  16. Nat Commun. 2019 Aug 8;10(1):3574 [PMID: 31395879]
  17. Nucleic Acids Res. 2014 Jan;42(Database issue):D1075-82 [PMID: 24198245]
  18. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  19. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  20. Assay Drug Dev Technol. 2018 Apr;16(3):162-176 [PMID: 29658791]
  21. Curr Opin Syst Biol. 2018 Aug;10:43-52 [PMID: 30159406]
  22. Drug Discov Today. 2014 Aug;19(8):1069-80 [PMID: 24560935]
  23. Cancer Inform. 2019 Jun 12;18:1176935119856595 [PMID: 31217689]
  24. Sci Rep. 2017 Mar 23;7(1):352 [PMID: 28336967]
  25. Cell. 2017 Nov 30;171(6):1437-1452.e17 [PMID: 29195078]
  26. ACS Chem Biol. 2012 Aug 17;7(8):1399-409 [PMID: 22594495]
  27. Front Genet. 2018 Sep 18;9:396 [PMID: 30279702]
  28. Biotechniques. 2007 Nov;43(5):575, 577-8, 581-2 passim [PMID: 18072586]
  29. Nat Med. 2017 Apr 7;23(4):405-408 [PMID: 28388612]
  30. Cancer Cell. 2006 Oct;10(4):321-30 [PMID: 17010675]
  31. J Cheminform. 2019 Aug 8;11(1):54 [PMID: 31396716]
  32. PLoS One. 2013;8(1):e54082 [PMID: 23382867]
  33. PLoS One. 2016 Mar 08;11(3):e0150460 [PMID: 26954019]
  34. Mol Pharm. 2016 Jul 5;13(7):2524-30 [PMID: 27200455]
  35. Assay Drug Dev Technol. 2016 May;14(4):252-60 [PMID: 27187605]
  36. Cell. 2000 Jul 7;102(1):109-26 [PMID: 10929718]
  37. Brief Bioinform. 2016 Jul;17(4):696-712 [PMID: 26283676]

Word Cloud

Created with Highcharts 10.0.0targettargetscompoundsmodelsQSARdatacompound-inducedsimilarsignaturesmolecularbiologicalcellchemicaltranscriptomicfingerprintsactivepredictioninteractiononealsomanyactivityevaluationsgeneexpressionspacedescriptorsMorganshowlinesusingPharmaceuticalphytopharmaceuticalmoleculesrelyspecificinduceanticipatedresponsesNonethelessproneinteractnon-intendedknownoff-targetsUnfortunatelyoff-targetidentificationdifficultexpensiveConsequentlypredictinggainedimportancedrugdiscoveryde-riskingchemicalsHoweverrestrictednumberwellcharacterizedholdenoughbuildgoodalternativeindividualuseintegrativetranscriptomicsobtainedmeasurementsderivedculturesadvantageparticularexperimentscaptureconsequencespossiblepathwayswithoutconstraintsconcerningworkassessedvaluelargepublicdatasetpredictcompoundselection69comparednamelyextended-connectivityDependingmultiplewhethershareddifferentstructuresRandomforestableperformsimilarlybettercounterpartbuilt25%tasksperformancesoccurredmostlyproducedshowingtowardconsideredrepresentgreatopportunityallowingovercomelimitationExploringUseCompound-InducedTranscriptomicDataGeneratedCellLinesPredictCompoundActivityTowardMolecularTargetscellularcontextmachinelearning

Similar Articles

Cited By