Diesel Soot Combustion over Mn O Catalysts with Different Morphologies: Elucidating the Role of Active Oxygen Species in Soot Combustion.

Yasutaka Kuwahara, Genki Kato, Akihiro Fujibayashi, Kohsuke Mori, Hiromi Yamashita
Author Information
  1. Yasutaka Kuwahara: Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan. ORCID
  2. Genki Kato: Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
  3. Akihiro Fujibayashi: Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
  4. Kohsuke Mori: Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan. ORCID
  5. Hiromi Yamashita: Division of Materials and Manufacturing Science Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan. ORCID

Abstract

Catalytic diesel soot combustion was examined using a series of Mn O catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate-shaped Mn O (Mn O -plate) exhibited superior carbon soot combustion activity compared to the prism-shaped, hollow-structured and powdery Mn O under both tight and loose contact modes at soot combustion temperatures (T ) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction and oxygen release measurements, revealed that the improved activity of Mn O -plate was mainly attributed to the high oxygen release rate of surface-adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface-exposed planes. The study provides new insights for the design and synthesis of efficient oxidation catalysts for carbon soot combustion as well as for other oxidation reactions of harmful hydrocarbon compounds.

Keywords

References

  1. M. V. Twigg, Appl. Catal. B 2007, 70, 2-15.
  2. J. P. A. Neeft, M. Makkee, J. A. Moulijn, Fuel Process. Technol. 1996, 47, 1-69.
  3. R. Niessner, Angew. Chem. Int. Ed. 2014, 53, 12366-12379.
  4. F. J. Kelly, J. C. Fussell, Environ. Geochem. Health. 2015, 37, 631-649.
  5. G. B. Hamra, N. Guha, A. Cohen, F. Laden, O. Raaschou-Nielsen, J. M. Samet, P. Vineis, F. Forastiere, P. Saldiva, T. Yorifuji, D. Loomis, Environ. Health Perspect. 2014, 122, 906-911.
  6. J. C. Summers, S. V. Houtte, D. Psaras, Appl. Catal. B 1996, 10, 139-156.
  7. B. A. A. L. v Setten, M. Makkee, J. A. Moulijn, Catal. Rev. 2001, 43, 489-564.
  8. K. S. Martirosyan, K. Chen, D. Luss, Chem. Eng. Sci. 2010, 65, 42-46.
  9. D. N. Belton, K. C. Taylor, Curr. Opin. Solid State Mater. Sci. 1999, 4, 97-102.
  10. A. Setiabudi, J. Chen, G. Mul, M. Makkee, J. A. Moulijn, Appl. Catal. B 2004, 51, 9-19.
  11. K. Shimizu, H. Kawachi, A. Satsuma, Appl. Catal. B 2010, 96, 169-175.
  12. A. Buenolopez, K. Krishna, M. Makkee, J. Moulijn, J. Catal. 2005, 230, 237-248.
  13. E. Aneggi, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Appl. Catal. B 2009, 91, 489-498.
  14. A. Bueno-López, Appl. Catal. B 2014, 146, 1-11.
  15. Y. Wei, J. Liu, Z. Zhao, A. Duan, G. Jiang, J. Catal. 2012, 287, 13-29.
  16. D. Fino, N. Russo, G. Saracco, V. Specchia, J. Catal. 2003, 217, 367-375.
  17. N. Russo, D. Fino, G. Saracco, V. Specchia, J. Catal. 2005, 229, 459-469.
  18. V. Torregrosa-Rivero, V. Albaladejo-Fuentes, M.-S. Sánchez-Adsuar, M.-J. Illán-Gómez, RSC Adv. 2017, 7, 35228-35238.
  19. N. Labhasetwar, G. Saravanan, S. Kumar Megarajan, N. Manwar, R. Khobragade, P. Doggali, F. Grasset, Sci. Technol. Adv. Mater. 2015, 16, 036002 (13 pages).
  20. K. Mori, Y. Iwata, M. Yamamoto, N. Kimura, A. Miyauchi, G. Okamoto, T. Toyoshima, H. Yamashita, J. Phys. Chem. C 2014, 118, 9078-9085.
  21. P. Doggali, H. Kusaba, S. Rayalu, Y. Teraoka, N. Labhsetwar, Top. Catal. 2013, 56, 457-461.
  22. K. Harada, T. Oishi, S. Hamamoto, T. Ishihara, J. Phys. Chem. C 2013, 118, 559-568.
  23. J. P. A. Neeft, M. Makkee, J. A. Moulijn, Appl. Catal. B 1996, 8, 57-78.
  24. J. Hou, Y. Li, M. Mao, L. Ren, X. Zhao, ACS Appl. Mater. Interfaces 2014, 6, 14981-14987.
  25. S. K. Megarajan, S. Rayalu, M. Nishibori, Y. Teraoka, N. Labhsetwar, ACS Catal. 2014, 5, 301-309.
  26. S. Periyasamy, P. Subramanian, E. Levi, D. Aurbach, A. Gedanken, A. Schechter, ACS Appl. Mater. Interfaces 2016, 8, 12176-12185.
  27. B. Bai, J. Li, J. Hao, Appl. Catal. B 2015, 164, 241-250.
  28. F. G. Durán, B. P. Barbero, L. E. Cadús, C. Rojas, M. A. Centeno, J. A. Odriozola, Appl. Catal. B 2009, 92, 194-201.
  29. J. Ma, C. Wang, H. He, Appl. Catal. B 2017, 201, 503-510.
  30. N. D. Wasalathanthri, T. M. SantaMaria, D. A. Kriz, S. L. Dissanayake, C.-H. Kuo, S. Biswas, S. L. Suib, Appl. Catal. B 2017, 201, 543-551.
  31. F. Dai, Y. Yu, M. Meng, J. Zhang, L. Zheng, T. Hu, Catal. Lett. 2014, 144, 1210-1218.
  32. J. Zhang, Y. Li, L. Wang, C. Zhang, H. He, Catal. Sci. Technol. 2015, 5, 2305-2313.
  33. Y. Wei, L. Ni, M. Li, J. Zhao, Catal. Today 2017, 297, 188-192.
  34. W. Si, Y. Wang, Y. Peng, X. Li, K. Li, J. Li, Chem. Commun. 2015, 51, 14977-14980.
  35. S. Wagloehner, M. Nitzer-Noski, S. Kureti, Chem. Eng. J. 2015, 259, 492-504.
  36. N. Guilhaume, B. Bassou, G. Bergeret, D. Bianchi, F. Bosselet, A. Desmartin-Chomel, B. Jouguet, C. Mirodatos, Appl. Catal. B 2012, 119-120, 287-296.
  37. E. Aneggi, V. Rico-Perez, C. d Leitenburg, S. Maschio, L. Soler, J. Llorca, A. Trovarelli, Angew. Chem. Int. Ed. 2015, 54, 14040-14043.
  38. Z. Fan, J. W. Shi, C. Gao, G. Gao, B. Wang, C. Niu, ACS Appl. Mater. Interfaces 2017, 9, 16117-16127.
  39. X. Tang, J. Chen, Y. Li, Y. Li, Y. Xu, W. Shen, Chem. Eng. J. 2006, 118, 119-125.
  40. Y. Kuwahara, A. Fujibayashi, H. Uehara, K. Mori, H. Yamashita, Catal. Sci. Technol. 2018, 8, 1905-1914.
  41. L. Cheng, Y. Men, J. Wang, H. Wang, W. An, Y. Wang, Z. Duan, J. Liu, Appl. Catal. B 2017, 204, 374-384.
  42. K. Mori, Y. Miyauchi, Y. Kuwahara, H. Yamashita, Bull. Chem. Soc. Jpn. 2017, 90, 556-564.
  43. K. Mori, H. Jida, Y. Kuwahara, H. Yamashita, Nanoscale 2020, 12, 1779-1789.
  44. Y. Wang, L. Guo, M. Chen, C. Shi, Catal. Sci. Technol. 2018, 8, 459-471.
  45. X. Wang, W. Zhao, T. Zhang, Y. Zhang, L. Jiang, S. Yin, Chem. Commun. 2018, 54, 2154-2157.
  46. S. Geller, Acta Crystallogr. 1971, B27, 821-828.
  47. Y. Zhang, Y. Yan, X. Wang, G. Li, D. Deng, L. Jiang, C. Shu, C. Wang, Chem. Eur. J. 2014, 20, 6126-6130.
  48. H. Einaga, S. Yamamoto, N. Maeda, Y. Teraoka, Catal. Today 2015, 242, 287-293.
  49. S. Ponce, M. A. Peña, J. L. G. Fierro, Appl. Catal. B 2000, 24, 193-205.
  50. M.-C. Bernard, A. H.-L. Goff, B. V. Thi, S. C. d Torresi, J. Electrochem. Soc. 1993, 140, 3065-3070.
  51. J. Wang, J. Li, C. Jiang, P. Zhou, P. Zhang, J. Yu, Appl. Catal. B 2017, 204, 147-155.
  52. S. Rong, K. Li, P. Zhang, F. Liu, J. Zhang, Catal. Sci. Technol. 2018, 8, 1799-1812.
  53. Y. Kuwahara, Y. Yoshimura, H. Yamashita, Dalton Trans. 2017, 46, 8415-8421.
  54. H. B. Lin, H. B. Rong, W. Z. Huang, Y. H. Liao, L. D. Xing, M. Q. Xu, X. P. Li, W. S. Li, J. Mater. Chem. A 2014, 2, 14189-14194.
  55. S. Zhang, X. Zhu, C. Zheng, D. Hu, J. Zhang, X. Gao, Aerosol Air Qual. Res. 2017, 17, 2110-2118.

Grants

  1. JPMXP0112101003/Element Strategy Initiative for Catalysts & Batteries
  2. /Iwatani Naoji Foundation
  3. /JST
  4. JPMJPR19T3/PRESTO
  5. 2017B1081/JASRI
  6. 2019 A050/JASRI

Word Cloud

Created with Highcharts 10.0.0MnOsootcombustionoxygenusingcatalysts-platecarbonactivityscanningelectronmicroscopyX-rayreleasespeciesvacancyoxidationSootCombustionActiveOxygenCatalyticdieselexaminedseriesdifferentmorphologiesincludingplateprismhollowspherespowdersplate-shapedexhibitedsuperiorcomparedprism-shapedhollow-structuredpowderytightloosecontactmodestemperaturesT327 °C457 °CrespectivelyComprehensivecharacterizationstudiestransmissiondiffractionphotoelectronspectroscopytemperature-programmedreductionmeasurementsrevealedimprovedmainlyattributedhighratesurface-adsorbedactiveoriginatedsitesintroducedcatalystpreparationratherspecificsurface-exposedplanesstudyprovidesnewinsightsdesignsynthesisefficientwellreactionsharmfulhydrocarboncompoundsDieselCatalystsDifferentMorphologies:ElucidatingRoleSpeciesCarbonManganeseoxideParticulatematter

Similar Articles

Cited By