Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project.

Suzanne J K Mund, Eiko Kawamura, Awang Hazmi Awang-Junaidi, John Campbell, Bruce Wobeser, Daniel J MacPhee, Ali Honaramooz, Spencer Barber
Author Information
  1. Suzanne J K Mund: Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. ORCID
  2. Eiko Kawamura: WCVM Imaging Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
  3. Awang Hazmi Awang-Junaidi: Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. ORCID
  4. John Campbell: Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
  5. Bruce Wobeser: Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
  6. Daniel J MacPhee: Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
  7. Ali Honaramooz: Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada. ORCID
  8. Spencer Barber: Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.

Abstract

Limb wounds on horses are often slow to heal and are prone to developing exuberant granulation tissue (EGT) and close primarily through epithelialization, which results in a cosmetically inferior and non-durable repair. In contrast, wounds on the body heal rapidly and primarily through contraction and rarely develop EGT. Intravenous (IV) multipotent mesenchymal stromal cells (MSCs) are promising. They home and engraft to cutaneous wounds and promote healing in laboratory animals, but this has not been demonstrated in horses. Furthermore, the clinical safety of administering >1.00 × 10 allogeneic MSCs IV to a horse has not been determined. A proof-of-principle pilot project was performed with two horses that were administered 1.02 × 10 fluorescently labeled allogeneic cord blood-derived MSCs (CB-MSCs) following wound creation on the forelimb and thorax. Wounds and contralateral non-wounded skin were sequentially biopsied on days 0, 1, 2, 7, 14, and 33 and evaluated with confocal microscopy to determine presence of homing and engraftment. Results confirmed preferential homing and engraftment to wounds with persistence of CB-MSCs at 33 days following wound creation, without clinically adverse reactions to the infusion. The absence of overt adverse reactions allows further studies to determine effects of IV CB-MSCs on equine wound healing.

Keywords

References

  1. Adv Drug Deliv Rev. 2018 Jan 1;123:82-106 [PMID: 29106911]
  2. Wound Repair Regen. 2007 Sep-Oct;15 Suppl 1:S18-26 [PMID: 17727462]
  3. Vet Surg. 2001 May-Jun;30(3):269-77 [PMID: 11340559]
  4. Adv Wound Care (New Rochelle). 2012 Aug;1(4):147-152 [PMID: 24527296]
  5. Cytotherapy. 2015 Oct;17(10):1434-46 [PMID: 26212608]
  6. J Genet Eng Biotechnol. 2017 Dec;15(2):469-474 [PMID: 30647688]
  7. Equine Vet J. 1999 Jan;31(1):61-7 [PMID: 9952331]
  8. Cytotherapy. 2009;11(4):443-7 [PMID: 19513899]
  9. Equine Vet J. 2016 Sep;48(5):619-25 [PMID: 26114736]
  10. Vet Surg. 2013 Oct;42(7):783-9 [PMID: 24015864]
  11. Bone Marrow Transplant. 1996 Nov;18(5):949-53 [PMID: 8932850]
  12. PLoS One. 2014 Feb 20;9(2):e88348 [PMID: 24586314]
  13. Cell Tissue Res. 2019 May;376(2):257-271 [PMID: 30635774]
  14. Equine Vet J. 2015 Mar;47(2):145-54 [PMID: 24957845]
  15. Equine Vet J. 2015 Nov;47(6):708-14 [PMID: 25196173]
  16. Wound Repair Regen. 2002 May-Jun;10(3):188-94 [PMID: 12100380]
  17. Vet Immunol Immunopathol. 2011 Nov 15;144(1-2):147-54 [PMID: 21782255]
  18. Stem Cell Res Ther. 2015 Apr 15;6:73 [PMID: 25888916]
  19. Stem Cell Rev Rep. 2017 Dec;13(6):741-756 [PMID: 28812219]
  20. Stem Cell Res Ther. 2017 Feb 28;8(1):42 [PMID: 28241885]
  21. Stem Cells Transl Med. 2020 Jan;9(1):17-27 [PMID: 31804767]
  22. Vet Surg. 2002 May-Jun;31(3):274-80 [PMID: 11994856]
  23. Stem Cell Res Ther. 2015 Apr 12;6:54 [PMID: 25889095]
  24. Stem Cells Int. 2016;2016:5830103 [PMID: 27648075]
  25. Mediators Inflamm. 2017;2017:5217967 [PMID: 29213192]
  26. Equine Vet J. 1999 Jan;31(1):53-60 [PMID: 9952330]
  27. Wound Repair Regen. 2011 Jan-Feb;19(1):89-97 [PMID: 20955347]
  28. Vet J. 2015 Feb;203(2):137 [PMID: 25599901]
  29. Stem Cells Transl Med. 2013 Jan;2(1):33-42 [PMID: 23283490]
  30. Biol Reprod. 2002 Jan;66(1):21-8 [PMID: 11751259]
  31. Cytotherapy. 2016 Apr;18(4):562-9 [PMID: 26971684]
  32. Vet Surg. 2002 May-Jun;31(3):266-73 [PMID: 11994855]
  33. Stem Cells. 2017 Jun;35(6):1446-1460 [PMID: 28316123]
  34. PLoS One. 2014 Dec 01;9(12):e113615 [PMID: 25438145]
  35. Equine Vet J. 2015 Mar;47(2):245-8 [PMID: 24612194]
  36. Crit Rev Biomed Eng. 2009;37(4-5):399-421 [PMID: 20528733]
  37. Acad Emerg Med. 2013 Apr;20(4):398-402 [PMID: 23701348]
  38. Stem Cell Res Ther. 2019 Apr 27;10(1):126 [PMID: 31029166]
  39. Acta Vet Scand. 2014 Mar 21;56:16 [PMID: 24655411]
  40. Equine Vet J. 2010 Oct;42(7):636-42 [PMID: 20840579]
  41. J Immunol. 2008 Feb 15;180(4):2581-7 [PMID: 18250469]
  42. Appl Immunohistochem Mol Morphol. 2011 Mar;19(2):153-9 [PMID: 20881838]
  43. FASEB J. 2008 Feb;22(2):374-82 [PMID: 17873102]
  44. Biochim Biophys Acta. 2014 Aug;1840(8):2506-19 [PMID: 24418517]
  45. Vet Immunol Immunopathol. 2015 Jun 15;165(3-4):107-18 [PMID: 25977164]
  46. Mol Reprod Dev. 2003 Apr;64(4):422-8 [PMID: 12589654]
  47. Stem Cells. 2007 Oct;25(10):2648-59 [PMID: 17615264]
  48. Biol Reprod. 2013 Jan 31;88(1):27 [PMID: 23221397]
  49. Stem Cells Transl Med. 2012 Feb;1(2):142-9 [PMID: 23197761]
  50. Cell Adh Migr. 2017 Jan 2;11(1):110-119 [PMID: 27294313]
  51. Front Vet Sci. 2019 Jan 30;6:9 [PMID: 30761313]
  52. Stem Cell Res Ther. 2015 Nov 26;6:229 [PMID: 26612085]
  53. Cell Mol Immunol. 2015 Jul;12(4):444-55 [PMID: 25242276]
  54. Vet Immunol Immunopathol. 2016 Mar;171:57-65 [PMID: 26964718]
  55. PLoS One. 2015 Apr 22;10(4):e0122954 [PMID: 25902064]
  56. Stem Cells. 2016 Jul;34(7):1812-25 [PMID: 26989838]
  57. Cytokine Growth Factor Rev. 2019 Jun;47:32-42 [PMID: 31129018]
  58. J Cell Biochem. 2014 May;115(5):826-38 [PMID: 24265231]
  59. Stem Cells Transl Med. 2018 Jan;7(1):98-108 [PMID: 29063737]
  60. Stem Cell Res Ther. 2014 Jul 30;5(4):90 [PMID: 25080326]
  61. J Orthop Translat. 2017 Mar 29;9:19-27 [PMID: 29662796]
  62. Microvasc Res. 2009 May;77(3):370-6 [PMID: 19249320]
  63. Vet J. 2013 Jan;195(1):107-13 [PMID: 22717781]
  64. Nat Nanotechnol. 2013 Nov;8(11):831-8 [PMID: 24141540]
  65. Stem Cells Int. 2013;2013:732742 [PMID: 24000286]
  66. Equine Vet J. 2003 Sep;35(6):561-9 [PMID: 14515955]
  67. Front Vet Sci. 2016 Jul 22;3:56 [PMID: 27500136]
  68. Stem Cell Res Ther. 2015 Jan 27;6:11 [PMID: 25971703]
  69. Stem Cells Dev. 2017 Apr 1;26(7):503-511 [PMID: 27958776]
  70. Vet Clin North Am Equine Pract. 2018 Aug;34(2):359-373 [PMID: 29803299]
  71. Plast Reconstr Surg Glob Open. 2013 Aug 07;1(4):e25 [PMID: 25289219]
  72. Wound Repair Regen. 2013 May-Jun;21(3):365-71 [PMID: 23441750]
  73. Vet Surg. 2016 Jul;45(5):619-24 [PMID: 27246971]
  74. Curr Stem Cell Res Ther. 2014;9(6):452-7 [PMID: 24548143]
  75. Int J Mol Sci. 2018 Mar 02;19(3): [PMID: 29498630]
  76. Equine Vet J. 2017 Jul;49(4):539-544 [PMID: 27862236]
  77. Equine Vet J. 2014 Jul;46(4):479-83 [PMID: 23834199]
  78. Res Vet Sci. 2012 Dec;93(3):1439-40 [PMID: 22579411]
  79. Stem Cell Res Ther. 2016 Nov 10;7(1):160 [PMID: 27832815]
  80. Stem Cells Dev. 2011 Aug;20(8):1297-308 [PMID: 21303266]

MeSH Term

Administration, Intravenous
Animals
Biopsy
Extremities
Fetal Blood
Fluorescence
Horses
Mesenchymal Stem Cell Transplantation
Mesenchymal Stem Cells
Multipotent Stem Cells
Pilot Projects
Skin
Wound Healing
Wounds and Injuries

Word Cloud

Created with Highcharts 10.0.0woundswoundhorsesIVMSCsCB-MSCshealexuberantgranulationtissueEGTprimarilycellshealing×10allogeneichorse1followingcreationdays33determinehomingengraftmentadversereactionsequineLimboftenslowpronedevelopingcloseepithelializationresultscosmeticallyinferiornon-durablerepaircontrastbodyrapidlycontractionrarelydevelopIntravenousmultipotentmesenchymalstromalpromisinghomeengraftcutaneouspromotelaboratoryanimalsdemonstratedFurthermoreclinicalsafetyadministering>100determinedproof-of-principlepilotprojectperformedtwoadministered02fluorescentlylabeledcordblood-derivedforelimbthoraxWoundscontralateralnon-woundedskinsequentiallybiopsied02714evaluatedconfocalmicroscopypresenceResultsconfirmedpreferentialpersistencewithoutclinicallyinfusionabsenceovertallowsstudieseffectsHomingEngraftmentIntravenouslyAdministeredEquineCordBlood-DerivedMultipotentMesenchymalStromalCellsSurgicallyCreatedCutaneousWoundHorses:PilotProjectlimbintravenousstem

Similar Articles

Cited By