A Single Amino Acid Replacement in Penicillin-Binding Protein 2X in Streptococcus pyogenes Significantly Increases Fitness on Subtherapeutic Benzylpenicillin Treatment in a Mouse Model of Necrotizing Myositis.

Randall J Olsen, Luchang Zhu, James M Musser
Author Information
  1. Randall J Olsen: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
  2. Luchang Zhu: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas.
  3. James M Musser: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York. Electronic address: jmmusser@houstonmethodist.org.

Abstract

Invasive strains of Streptococcus pyogenes with significantly reduced susceptibility to β-lactam antibiotics have been recently described. These reports have caused considerable concern in the international infectious disease, medical microbiology, and public health communities because S. pyogenes has remained universally susceptible to β-lactam antibiotics for 70 years. Virtually all analyzed strains had single amino acid replacements in penicillin-binding protein 2X (PBP2X), a major target of β-lactam antibiotics in pathogenic bacteria. We used isogenic strains to test the hypothesis that a single amino acid replacement in PBP2X conferred a fitness advantage in a mouse model of necrotizing myositis. We determined that when mice were administered intermittent subtherapeutic dosing of benzylpenicillin, the strain with a Pro601Leu amino acid replacement in PBP2X that confers reduced β-lactam susceptibility in vitro was more fit, as assessed by the magnitude of colony-forming units recovered from disease tissue. These data provide important pathogenesis information that bears on this emerging global infectious disease problem.

References

  1. J Antimicrob Chemother. 2010 Mar;65(3):594-5 [PMID: 20022939]
  2. Microb Drug Resist. 2016 Dec;22(8):646-654 [PMID: 27042760]
  3. J Clin Microbiol. 2014 Sep;52(9):3406-10 [PMID: 24920773]
  4. mBio. 2016 May 31;7(3): [PMID: 27247229]
  5. J Mol Biol. 2000 Jun 2;299(2):477-85 [PMID: 10860753]
  6. J Biol Chem. 1999 Jul 2;274(27):19175-80 [PMID: 10383423]
  7. Nat Genet. 2013 Oct;45(10):1183-9 [PMID: 23995135]
  8. Antimicrob Agents Chemother. 2011 Jun;55(6):2983-5 [PMID: 21383092]
  9. N Engl J Med. 2017 Aug 24;377(8):713-722 [PMID: 28834488]
  10. PLoS One. 2014 Apr 14;9(4):e94953 [PMID: 24733050]
  11. Antimicrob Agents Chemother. 2008 Dec;52(12):4258-67 [PMID: 18809936]
  12. J Clin Microbiol. 2020 Mar 25;58(4): [PMID: 31996443]
  13. Am J Pathol. 2017 Mar;187(3):605-613 [PMID: 28034602]
  14. Antimicrob Agents Chemother. 2000 Jun;44(6):1575-7 [PMID: 10817711]
  15. Appl Environ Microbiol. 2019 Oct 16;85(21): [PMID: 31471300]
  16. Pediatr Rev. 1998 Sep;19(9):291-302 [PMID: 9745311]
  17. Curr Top Microbiol Immunol. 2013;368:1-27 [PMID: 23242849]
  18. Antimicrob Agents Chemother. 2008 Aug;52(8):2890-7 [PMID: 18490507]
  19. Clin Infect Dis. 2019 Aug 16;69(5):877-883 [PMID: 30624673]
  20. J Infect Dis. 2007 Oct 1;196(7):1068-75 [PMID: 17763330]
  21. J Antimicrob Chemother. 2012 Apr;67(4):849-56 [PMID: 22210756]
  22. Nat Struct Biol. 1996 Mar;3(3):284-9 [PMID: 8605631]
  23. J Infect Dis. 2001 Jul 1;184(1):66-72 [PMID: 11398111]
  24. J Antimicrob Chemother. 2009 Dec;64(6):1326-8 [PMID: 19837716]
  25. Vaccine. 2018 Jun 7;36(24):3397-3405 [PMID: 29496349]
  26. Microb Drug Resist. 2017 Dec;23(8):1019-1024 [PMID: 28402182]
  27. Microb Drug Resist. 2019 Jan/Feb;25(1):39-46 [PMID: 30070961]
  28. Antimicrob Agents Chemother. 2008 Aug;52(8):2915-8 [PMID: 18541727]
  29. Nat Commun. 2012 Mar 20;3:753 [PMID: 22434196]
  30. J Clin Invest. 2015 Sep;125(9):3545-59 [PMID: 26258415]
  31. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3949-53 [PMID: 9520473]
  32. N Engl J Med. 2001 Jan 18;344(3):205-11 [PMID: 11172144]
  33. Antimicrob Agents Chemother. 2010 Mar;54(3):1140-5 [PMID: 20065061]
  34. J Antimicrob Chemother. 2013 Jul;68(7):1533-6 [PMID: 23449828]
  35. Eur J Clin Microbiol Infect Dis. 2018 Aug;37(8):1511-1519 [PMID: 29770902]
  36. N Engl J Med. 2017 Dec 7;377(23):2253-2265 [PMID: 29211672]
  37. J Antimicrob Chemother. 2018 Oct 1;73(10):2797-2805 [PMID: 30107601]
  38. BMC Res Notes. 2018 Aug 31;11(1):632 [PMID: 30170603]
  39. Clin Microbiol Rev. 2014 Apr;27(2):264-301 [PMID: 24696436]
  40. mSphere. 2017 Nov 1;2(6): [PMID: 29104937]
  41. Clin Infect Dis. 1998 Jun;26(6):1341-5 [PMID: 9636860]
  42. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13403-6 [PMID: 9811812]
  43. Future Microbiol. 2017 Jul;12:753-765 [PMID: 28343421]
  44. J Antimicrob Chemother. 2016 Dec;71(12):3376-3380 [PMID: 27585966]
  45. Microbiol Immunol. 2019 Feb;63(2):65-76 [PMID: 30632638]
  46. J Biol Chem. 2004 Apr 16;279(16):16463-70 [PMID: 14734544]
  47. Clin Infect Dis. 2020 Jun 24;71(1):201-204 [PMID: 31630171]
  48. J Clin Invest. 2019 Feb 1;129(2):887-901 [PMID: 30667377]
  49. Clin Microbiol Infect. 2017 Aug;23(8):574.e7-574.e14 [PMID: 28257899]
  50. Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):888-93 [PMID: 20080771]
  51. FEMS Microbiol Rev. 2008 Mar;32(2):361-85 [PMID: 18248419]
  52. JAMA Pediatr. 2014 Nov;168(11):1073-4 [PMID: 25264869]
  53. N Engl J Med. 2011 Feb 17;364(7):648-55 [PMID: 21323542]
  54. Clin Infect Dis. 2020 Jan 16;70(3):370-377 [PMID: 30882145]
  55. J Antimicrob Chemother. 2015;70(6):1601-3 [PMID: 25667406]
  56. Lancet Infect Dis. 2005 Nov;5(11):685-94 [PMID: 16253886]
  57. Vaccine. 2016 Jun 3;34(26):2953-2958 [PMID: 27032515]
  58. Vaccine. 2017 Apr 11;35(16):2007-2014 [PMID: 28318768]

Grants

  1. R21 AI139369/NIAID NIH HHS
  2. R21 AI146771/NIAID NIH HHS

MeSH Term

Amino Acid Substitution
Animals
Anti-Bacterial Agents
Disease Models, Animal
Fasciitis, Necrotizing
Mice
Myositis
Penicillin G
Penicillin-Binding Proteins
Streptococcus pyogenes

Chemicals

Anti-Bacterial Agents
Penicillin-Binding Proteins
PBP 2x protein, Streptococcus
Penicillin G

Word Cloud

Created with Highcharts 10.0.0β-lactamstrainspyogenesantibioticsdiseaseaminoacidPBP2XStreptococcusreducedsusceptibilityinfectioussingle2XreplacementInvasivesignificantlyrecentlydescribedreportscausedconsiderableconcerninternationalmedicalmicrobiologypublichealthcommunitiesSremaineduniversallysusceptible70yearsVirtuallyanalyzedreplacementspenicillin-bindingproteinmajortargetpathogenicbacteriausedisogenictesthypothesisconferredfitnessadvantagemousemodelnecrotizingmyositisdeterminedmiceadministeredintermittentsubtherapeuticdosingbenzylpenicillinstrainPro601Leuconfersin vitrofitassessedmagnitudecolony-formingunitsrecoveredtissuedataprovideimportantpathogenesisinformationbearsemergingglobalproblemSingleAminoAcidReplacementPenicillin-BindingProteinSignificantlyIncreasesFitnessSubtherapeuticBenzylpenicillinTreatmentMouseModelNecrotizing Myositis

Similar Articles

Cited By