A Single Amino Acid Replacement in Penicillin-Binding Protein 2X in Streptococcus pyogenes Significantly Increases Fitness on Subtherapeutic Benzylpenicillin Treatment in a Mouse Model of Necrotizing Myositis.
Randall J Olsen, Luchang Zhu, James M Musser
Author Information
Randall J Olsen: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York.
Luchang Zhu: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas.
James M Musser: Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas; Clinical Microbiology Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York. Electronic address: jmmusser@houstonmethodist.org.
Invasive strains of Streptococcus pyogenes with significantly reduced susceptibility to β-lactam antibiotics have been recently described. These reports have caused considerable concern in the international infectious disease, medical microbiology, and public health communities because S. pyogenes has remained universally susceptible to β-lactam antibiotics for 70 years. Virtually all analyzed strains had single amino acid replacements in penicillin-binding protein 2X (PBP2X), a major target of β-lactam antibiotics in pathogenic bacteria. We used isogenic strains to test the hypothesis that a single amino acid replacement in PBP2X conferred a fitness advantage in a mouse model of necrotizing myositis. We determined that when mice were administered intermittent subtherapeutic dosing of benzylpenicillin, the strain with a Pro601Leu amino acid replacement in PBP2X that confers reduced β-lactam susceptibility in vitro was more fit, as assessed by the magnitude of colony-forming units recovered from disease tissue. These data provide important pathogenesis information that bears on this emerging global infectious disease problem.