Coevolution of cognitive abilities and identity signals in individual recognition systems.

Sara E Miller, Michael J Sheehan, H Kern Reeve
Author Information
  1. Sara E Miller: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
  2. Michael J Sheehan: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
  3. H Kern Reeve: Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.

Abstract

Social interactions are mediated by recognition systems, meaning that the cognitive abilities or phenotypic diversity that facilitate recognition may be common targets of social selection. Recognition occurs when a receiver compares the phenotypes produced by a sender with a template. Coevolution between sender and receiver traits has been empirically reported in multiple species and sensory modalities, though the dynamics and relative exaggeration of traits from senders versus receivers have received little attention. Here, we present a coevolutionary dynamic model that examines the conditions under which senders and receivers should invest effort in facilitating individual recognition. The model predicts coevolution of sender and receiver traits, with the equilibrium investment dependent on the relative costs of signal production versus cognition. In order for recognition to evolve, initial sender and receiver trait values must be above a threshold, suggesting that recognition requires some degree of pre-existing diversity and cognitive abilities. The analysis of selection gradients demonstrates that the strength of selection on sender signals and receiver cognition is strongest when the trait values are furthest from the optima. The model provides new insights into the expected strength and dynamics of selection during the origin and elaboration of individual recognition, an important feature of social cognition in many taxa. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.

Keywords

References

  1. Trends Ecol Evol. 2007 Oct;22(10):529-37 [PMID: 17904686]
  2. Brain Behav Evol. 2008;71(1):1-14 [PMID: 17878714]
  3. Curr Biol. 2005 Dec 6;15(23):2170-4 [PMID: 16332544]
  4. Am Nat. 1999 Jun;153(6):633-648 [PMID: 29585642]
  5. J Evol Biol. 2009 Mar;22(3):644-9 [PMID: 19170823]
  6. Bioessays. 2004 Dec;26(12):1288-98 [PMID: 15551272]
  7. Science. 2019 Apr 5;364(6435):86-89 [PMID: 30948551]
  8. Proc Biol Sci. 2002 Jul 22;269(1499):1423-8 [PMID: 12137570]
  9. J Exp Biol. 2017 Dec 15;220(Pt 24):4554-4566 [PMID: 29237765]
  10. Behav Processes. 1998 Apr;43(1):87-96 [PMID: 24897644]
  11. Biol Rev Camb Philos Soc. 2013 Feb;88(1):179-95 [PMID: 22978769]
  12. Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6569-6574 [PMID: 28533385]
  13. Anim Cogn. 2012 Sep;15(5):745-62 [PMID: 22639070]
  14. Sci Adv. 2015 Sep 11;1(8):e1500325 [PMID: 26601259]
  15. Curr Biol. 2009 Nov 17;19(21):R995-R1008 [PMID: 19922859]
  16. Proc Biol Sci. 2015 Mar 7;282(1802): [PMID: 25652832]
  17. Anim Behav. 2001 Jan;61(1):129-137 [PMID: 11170703]
  18. Mol Biol Evol. 2016 Dec;33(12):3268-3283 [PMID: 27795229]
  19. Am Nat. 2011 Apr;177(4):496-509 [PMID: 21460571]
  20. Nature. 2001 Dec 6;414(6864):631-4 [PMID: 11740558]
  21. Behav Brain Res. 2009 Jun 25;200(2):295-303 [PMID: 19146884]
  22. Proc Biol Sci. 2010 Oct 7;277(1696):3045-53 [PMID: 20462901]
  23. Biosystems. 1996;37(1-2):49-66 [PMID: 8924639]
  24. Nat Commun. 2017 Aug 17;8(1):297 [PMID: 28819196]
  25. Proc Biol Sci. 2004 Sep 22;271(1551):1955-60 [PMID: 15347520]
  26. Curr Biol. 2018 Dec 17;28(24):4001-4008.e7 [PMID: 30528582]
  27. Nature. 2018 May;557(7706):554-557 [PMID: 29795254]
  28. J Evol Biol. 2011 Jun;24(6):1188-98 [PMID: 21375648]
  29. Proc Biol Sci. 2001 Oct 7;268(1480):2013-9 [PMID: 11571048]
  30. Nat Commun. 2014 Sep 16;5:4800 [PMID: 25226282]
  31. Brain Res Bull. 1997;44(4):383-95 [PMID: 9370203]
  32. Nat Commun. 2016 Jan 25;7:10474 [PMID: 26805030]
  33. Philos Trans R Soc Lond B Biol Sci. 2011 Jun 12;366(1571):1764-77 [PMID: 21536559]
  34. J R Soc Interface. 2019 Apr 26;16(153):20190115 [PMID: 30966949]
  35. Integr Comp Biol. 2017 Sep 1;57(3):580-588 [PMID: 28957515]
  36. Proc Biol Sci. 2008 Aug 7;275(1644):1727-35 [PMID: 18448415]
  37. Curr Biol. 2010 Jan 26;20(2):137-42 [PMID: 20060296]
  38. Proc Biol Sci. 2004 Jul 22;271(1547):1537-40 [PMID: 15306327]
  39. Evolution. 2012 Dec;66(12):3736-42 [PMID: 23206132]
  40. Nat Genet. 2018 Aug;50(8):1112-1121 [PMID: 30038396]
  41. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9562-6 [PMID: 20457901]
  42. Am Nat. 2007 Mar;169(3):409-15 [PMID: 17230403]
  43. Science. 2001 Feb 23;291(5508):1560-3 [PMID: 11222864]
  44. Mol Ecol. 2019 Aug;28(15):3587-3601 [PMID: 31232499]
  45. Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9737-42 [PMID: 19487670]
  46. Nature. 2000 Jul 27;406(6794):404-5 [PMID: 10935635]
  47. Proc Biol Sci. 2007 Jan 7;274(1606):33-42 [PMID: 17015333]
  48. Am Nat. 2001 Jul;158(1):75-86 [PMID: 18707316]
  49. PLoS Genet. 2016 Mar 03;12(3):e1005891 [PMID: 26938775]
  50. Evolution. 2010 Nov;64(11):3123-33 [PMID: 20561050]
  51. Nature. 2002 Feb 7;415(6872):609-13 [PMID: 11832937]
  52. Nature. 2017 Nov 2;551(7678):45-50 [PMID: 29045390]
  53. J Exp Biol. 2008 Jun;211(Pt 11):1792-804 [PMID: 18490395]
  54. Curr Biol. 2008 Sep 23;18(18):R851-2 [PMID: 18812075]
  55. Anim Behav. 2000 Jan;59(1):221-230 [PMID: 10640384]
  56. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Jan;201(1):19-37 [PMID: 25502323]
  57. Curr Biol. 2007 Oct 23;17(20):1771-7 [PMID: 17949982]
  58. Evolution. 2009 Dec;63(12):3106-13 [PMID: 19744121]
  59. Annu Rev Ecol Evol Syst. 2014 Nov 1;45:179-201 [PMID: 26740803]
  60. Science. 2011 Dec 2;334(6060):1272-5 [PMID: 22144625]
  61. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):573-86 [PMID: 16645885]

Grants

  1. DP2 GM128202/NIGMS NIH HHS

MeSH Term

Animal Communication
Animals
Biological Evolution
Cognition
Models, Biological
Recognition, Psychology
Species Specificity

Word Cloud

Created with Highcharts 10.0.0recognitionreceiversenderindividualsocialselectioncognitioncognitiveabilitiestraitsmodelsignalssystemsdiversityCoevolutiondynamicsrelativesendersversusreceiverstraitvaluesstrengthidentitySocialinteractionsmediatedmeaningphenotypicfacilitatemaycommontargetsRecognitionoccurscomparesphenotypesproducedtemplateempiricallyreportedmultiplespeciessensorymodalitiesthoughexaggerationreceivedlittleattentionpresentcoevolutionarydynamicexaminesconditionsinvesteffortfacilitatingpredictscoevolutionequilibriuminvestmentdependentcostssignalproductionorderevolveinitialmustthresholdsuggestingrequiresdegreepre-existinganalysisgradientsdemonstratesstrongestfurthestoptimaprovidesnewinsightsexpectedoriginelaborationimportantfeaturemanytaxaarticlepartthemeissue'Signaldetectiontheorysystems:evolvingmodelsexperimentaltests'communicationbrainhypothesis

Similar Articles

Cited By