Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment.

Louise Bundgaard, Allan Stensballe, Kirstine Juul Elbæk, Lise Charlotte Berg
Author Information
  1. Louise Bundgaard: Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark. lb@sund.ku.dk. ORCID
  2. Allan Stensballe: Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark.
  3. Kirstine Juul Elbæk: Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark.
  4. Lise Charlotte Berg: Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.

Abstract

BACKGROUND: Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment.
METHODS: Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins.
RESULTS: The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media.
CONCLUSION: The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.

Keywords

References

  1. J Leukoc Biol. 1994 Nov;56(5):559-64 [PMID: 7964163]
  2. Ann Clin Lab Sci. 2019 Jan;49(1):63-71 [PMID: 30814079]
  3. Vet Surg. 2014 Mar;43(3):255-65 [PMID: 24433318]
  4. Wound Repair Regen. 2006 Jul-Aug;14(4):471-8 [PMID: 16939576]
  5. Methods Mol Biol. 2016;1416:123-46 [PMID: 27236669]
  6. J Proteome Res. 2019 Dec 6;18(12):4108-4116 [PMID: 31599596]
  7. Prog Mol Biol Transl Sci. 2017;148:305-325 [PMID: 28662824]
  8. Semin Immunol. 2003 Feb;15(1):15-21 [PMID: 12495637]
  9. Arthritis Rheum. 2006 Feb;54(2):540-50 [PMID: 16447230]
  10. Arthritis Res Ther. 2017 Jan 21;19(1):10 [PMID: 28109308]
  11. Signal Transduct Target Ther. 2017;2: [PMID: 29158945]
  12. Ann Rheum Dis. 2015 Mar;74(3):e19 [PMID: 24448344]
  13. Tissue Eng Part A. 2014 Jan;20(1-2):147-59 [PMID: 23895198]
  14. Dev Biol. 2014 Jan 1;385(1):67-82 [PMID: 24161523]
  15. Cytokine Growth Factor Rev. 2015 Oct;26(5):475-87 [PMID: 26189695]
  16. J Proteomics. 2017 Aug 23;166:115-126 [PMID: 28739509]
  17. Osteoarthritis Cartilage. 2013 Aug;21(8):1116-24 [PMID: 23685224]
  18. Nucleic Acids Res. 2016 Dec 15;44(22):11033 [PMID: 27683222]
  19. Osteoarthritis Cartilage. 2006 Jan;14(1):30-8 [PMID: 16188469]
  20. Int J Clin Exp Med. 2015 Feb 15;8(2):2254-60 [PMID: 25932159]
  21. World J Stem Cells. 2015 Apr 26;7(3):556-67 [PMID: 25914763]
  22. World J Stem Cells. 2014 Nov 26;6(5):552-70 [PMID: 25426252]
  23. Arthroscopy. 2011 Nov;27(11):1552-61 [PMID: 21862278]
  24. Vet Clin North Am Equine Pract. 2018 Aug;34(2):345-358 [PMID: 29793734]
  25. Stem Cell Res Ther. 2018 Oct 25;9(1):288 [PMID: 30359315]
  26. Leukemia. 2016 May;30(5):1143-54 [PMID: 26898191]
  27. Matrix Biol. 2014 Jul;37:102-11 [PMID: 24997222]
  28. Arthritis Rheum. 2006 Jan;54(1):105-14 [PMID: 16385502]
  29. J Biol Chem. 2007 Nov 2;282(44):32185-92 [PMID: 17827158]
  30. J Chromatogr A. 2004 Jan 16;1023(2):317-20 [PMID: 14753699]
  31. Osteoarthritis Cartilage. 2009 Oct;17(10):1368-76 [PMID: 19463979]
  32. Vet Immunol Immunopathol. 2016 Mar;171:57-65 [PMID: 26964718]
  33. Arthritis Res. 2002;4 Suppl 3:S109-16 [PMID: 12110129]
  34. Front Biosci (Schol Ed). 2012 Jan 01;4:251-68 [PMID: 22202058]
  35. J Proteome Res. 2014 Feb 7;13(2):1045-54 [PMID: 24400832]
  36. Stem Cells Dev. 2017 Jan 1;26(1):15-24 [PMID: 27712399]
  37. Angiogenesis. 2018 May;21(2):215-228 [PMID: 29327326]
  38. Vet J. 2013 Feb;195(2):248-51 [PMID: 22771146]
  39. Stem Cell Res Ther. 2016 Apr 14;7(1):52 [PMID: 27075204]
  40. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  41. Rheumatol Int. 2014 Dec;34(12):1627-31 [PMID: 24807695]
  42. Int J Cosmet Sci. 2014 Oct;36(5):427-35 [PMID: 24847782]
  43. Int J Mol Sci. 2018 Jul 10;19(7): [PMID: 29996499]
  44. Int J Mol Sci. 2019 Aug 09;20(16): [PMID: 31404995]
  45. Semin Cell Dev Biol. 2001 Apr;12(2):69-78 [PMID: 11292372]
  46. Stem Cell Rev Rep. 2020 Apr;16(2):301-322 [PMID: 31797146]
  47. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  48. J Biol Chem. 1997 Jul 25;272(30):18709-17 [PMID: 9228042]
  49. Circ Res. 2006 Jun 9;98(11):1414-21 [PMID: 16690882]
  50. Anat Rec. 1989 Jun;224(2):167-79 [PMID: 2672883]
  51. Am J Physiol Renal Physiol. 2007 May;292(5):F1626-35 [PMID: 17213465]
  52. Bone. 2013 Apr;53(2):459-67 [PMID: 23337037]
  53. Front Immunol. 2012 Jul 20;3:212 [PMID: 22833744]
  54. Exp Cell Res. 2001 Aug 15;268(2):189-200 [PMID: 11478845]

MeSH Term

Animals
Bone Marrow
Bone Marrow Cells
Cell Differentiation
Cells, Cultured
Horses
Interleukin-1beta
Mesenchymal Stem Cells
Tandem Mass Spectrometry

Chemicals

Interleukin-1beta

Word Cloud

Created with Highcharts 10.0.0secretomecellschondrogenicIL-1βBM-MSCsproteinsnaïveinflammatorymedia48 hidentifiedstromalMSCsnormalexpansion5 daysresponsedifferentiationmesenchymalsecretedMSCeffectenvironmentstudyvitrobonemarrow-derivedEquinegroupCellstreatedstimulationwithoutIL6CXCL1CXCL6CCL7stimulatedculturedstillextensiveMassBACKGROUND:Similarhumanshorselong-livedathleticspeciesuserelativelynewfrontierusedpromisingresultstreatingjointdiseasesegosteoarthritisbelievedexertmaintherapeuticeffectstrophicbiomoleculesThereforeincreasinglyimportantcharacterizeshownstronglyinfluencedhostcompartmentcrucialissueconsideringtherapyaiminvestigatedifferencesproteinprofiledifferentiatingBM-MSCsexposedMETHODS:dividedperiodfollowedrecoveryMediacollected10 dayssecretomesdigestedanalyzednanoLC-MS/MSunravelorchestrationRESULTS:SEMA7ASAAhaptoglobinCXCL8OSMTGF-β1angiogenicVCAM1ICAM1VEGFAVEGFCproteasesMMP1MMP3proteaseinhibitorTIMP3among10-dayincubationessentialinducerinflammationCONCLUSION:findingsindicatecomparedundergoingdecreasedday10differencecompositionevidentspectrometricanalysisequineassessinterleukin-1βtreatmentChondrogenicInflammationJointdiseasespectrometryMesenchymalSecretome

Similar Articles

Cited By