SCOPE: A Normalization and Copy-Number Estimation Method for Single-Cell DNA Sequencing.

Rujin Wang, Dan-Yu Lin, Yuchao Jiang
Author Information
  1. Rujin Wang: Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
  2. Dan-Yu Lin: Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
  3. Yuchao Jiang: Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address: yuchaoj@email.unc.edu.

Abstract

Whole-genome single-cell DNA sequencing (scDNA-seq) enables characterization of copy-number profiles at the cellular level. We propose SCOPE, a normalization and copy-number estimation method for the noisy scDNA-seq data. SCOPE's main features include the following: (1) a Poisson latent factor model for normalization, which borrows information across cells and regions to estimate bias, using in silico identified negative control cells; (2) an expectation-maximization algorithm embedded in the normalization step, which accounts for the aberrant copy-number changes and allows direct ploidy estimation without the need for post hoc adjustment; and (3) a cross-sample segmentation procedure to identify breakpoints that are shared across cells with the same genetic background. We evaluate SCOPE on a diverse set of scDNA-seq data in cancer genomics and show that SCOPE offers accurate copy-number estimates and successfully reconstructs subclonal structure. A record of this paper's transparent peer review process is included in the Supplemental Information.

Keywords

References

  1. Genome Res. 2018 Aug;28(8):1217-1227 [PMID: 29898899]
  2. Nat Genet. 2015 Mar;47(3):209-16 [PMID: 25665006]
  3. Science. 2012 Dec 21;338(6114):1622-6 [PMID: 23258894]
  4. Nat Genet. 2016 Oct;48(10):1119-30 [PMID: 27526321]
  5. Nat Protoc. 2015 Oct;10(10):1556-66 [PMID: 26379229]
  6. Bioinformatics. 2018 Jun 15;34(12):2126-2128 [PMID: 29415173]
  7. Nat Methods. 2014 Apr;11(4):396-8 [PMID: 24633410]
  8. Nucleic Acids Res. 2015 Mar 31;43(6):e39 [PMID: 25618849]
  9. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  10. Cell. 2018 May 3;173(4):879-893.e13 [PMID: 29681456]
  11. Biometrika. 2010 Sep;97(3):631-645 [PMID: 22822250]
  12. Nucleic Acids Res. 2017 Jan 4;45(D1):D777-D783 [PMID: 27899578]
  13. Nature. 2011 Apr 7;472(7341):90-4 [PMID: 21399628]
  14. Genome Biol. 2018 Nov 26;19(1):202 [PMID: 30477554]
  15. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6 [PMID: 11959976]
  16. Nat Genet. 2007 Jul;39(7 Suppl):S37-42 [PMID: 17597780]
  17. Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5528-37 [PMID: 27573852]
  18. Nat Biotechnol. 2014 Sep;32(9):896-902 [PMID: 25150836]
  19. Genome Res. 2012 Oct;22(10):1995-2007 [PMID: 22637570]
  20. Genome Med. 2009 Jun 16;1(6):62 [PMID: 19566914]
  21. Nature. 2015 Oct 1;526(7571):75-81 [PMID: 26432246]
  22. Nat Biotechnol. 2012 May;30(5):413-21 [PMID: 22544022]
  23. Genome Biol. 2014 Aug 30;15(8):452 [PMID: 25222669]
  24. Nat Biotechnol. 2013 Mar;31(3):213-9 [PMID: 23396013]
  25. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 [PMID: 11125122]
  26. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  27. Nature. 2016 Nov 10;539(7628):309-313 [PMID: 27806376]
  28. Genome Biol. 2013 Jul 29;14(7):R80 [PMID: 23895164]
  29. Brief Bioinform. 2018 Sep 28;19(5):731-736 [PMID: 28159966]
  30. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  31. Nat Methods. 2015 Nov;12(11):1058-60 [PMID: 26344043]
  32. Genome Res. 2010 Jan;20(1):68-80 [PMID: 19903760]
  33. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  34. Nat Protoc. 2012 May 03;7(6):1024-41 [PMID: 22555242]
  35. PLoS One. 2012;7(1):e30377 [PMID: 22276185]
  36. Ann Appl Stat. 2017 Jun;11(2):1169-1192 [PMID: 28989557]
  37. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  38. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  39. Int J Biol Sci. 2017 Jul 18;13(8):949-960 [PMID: 28924377]
  40. Bioinformatics. 2018 Sep 15;34(18):3217-3219 [PMID: 29897414]

Grants

  1. R35 GM118102/NIGMS NIH HHS
  2. R01 HG009974/NHGRI NIH HHS
  3. P30 CA016086/NCI NIH HHS
  4. P01 CA142538/NCI NIH HHS
  5. R01 HL149683/NHLBI NIH HHS

MeSH Term

Algorithms
Base Sequence
Computer Simulation
DNA Copy Number Variations
Genome, Human
Genomics
High-Throughput Nucleotide Sequencing
Humans
Neoplasms
Polymorphism, Single Nucleotide
Research Design
Sequence Analysis, DNA
Single-Cell Analysis
Whole Genome Sequencing

Word Cloud

Created with Highcharts 10.0.0copy-numbernormalizationDNAscDNA-seqSCOPEcellssingle-cellsequencingestimationdataacrosscancergenomicscopynumberWhole-genomeenablescharacterizationprofilescellularlevelproposemethodnoisySCOPE'smainfeaturesincludefollowing:1Poissonlatentfactormodelborrowsinformationregionsestimatebiasusingsilicoidentifiednegativecontrol2expectation-maximizationalgorithmembeddedstepaccountsaberrantchangesallowsdirectploidywithoutneedposthocadjustment3cross-samplesegmentationprocedureidentifybreakpointssharedgeneticbackgroundevaluatediversesetshowoffersaccurateestimatessuccessfullyreconstructssubclonalstructurerecordpaper'stransparentpeerreviewprocessincludedSupplementalInformationSCOPE:NormalizationCopy-NumberEstimationMethodSingle-CellSequencingaberrationvariationtumorheterogeneity

Similar Articles

Cited By