Heterologous reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, the aglycon of antitumor polyketide mithramycin.

Daniel Zabala, Lijiang Song, Yousef Dashti, Gregory L Challis, José A Salas, Carmen Méndez
Author Information
  1. Daniel Zabala: Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain.
  2. Lijiang Song: Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
  3. Yousef Dashti: Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
  4. Gregory L Challis: Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
  5. José A Salas: Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain.
  6. Carmen Méndez: Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), University of Oviedo, Oviedo, Spain. cmendezf@uniovi.es. ORCID

Abstract

BACKGROUND: Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear.
RESULTS: Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps.
CONCLUSIONS: We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.

Keywords

References

  1. Chem Biol. 2013 Jun 20;20(6):796-805 [PMID: 23790490]
  2. Chem Biol. 1996 Mar;3(3):193-6 [PMID: 8807845]
  3. Biotechnol Adv. 2019 Nov 1;37(6):107366 [PMID: 30853630]
  4. J Bacteriol. 1997 May;179(10):3354-7 [PMID: 9150235]
  5. Chembiochem. 2008 Sep 22;9(14):2295-304 [PMID: 18756551]
  6. Org Lett. 2017 Feb 3;19(3):540-543 [PMID: 28102686]
  7. Chembiochem. 2009 Apr 17;10(6):1073-83 [PMID: 19266534]
  8. EMBO J. 2004 May 5;23(9):1911-21 [PMID: 15071504]
  9. Cancer Res. 2007 May 15;67(10):4878-85 [PMID: 17510417]
  10. Chem Biol. 2004 Jan;11(1):21-32 [PMID: 15112992]
  11. Clin Cancer Res. 2016 Aug 15;22(16):4105-18 [PMID: 26979396]
  12. J Med Chem. 2012 Jun 28;55(12):5813-25 [PMID: 22578073]
  13. Chem Biol Interact. 2014 Aug 5;219:123-32 [PMID: 24907531]
  14. J Am Chem Soc. 2002 Feb 27;124(8):1606-14 [PMID: 11853433]
  15. Mol Microbiol. 1998 Jun;28(6):1177-85 [PMID: 9680207]
  16. PLoS One. 2015 Nov 04;10(11):e0140786 [PMID: 26536461]
  17. Science. 1993 Dec 3;262(5139):1546-50 [PMID: 8248802]
  18. Metab Eng. 2013 Nov;20:187-97 [PMID: 24148183]
  19. J Am Chem Soc. 2009 Dec 9;131(48):17677-89 [PMID: 19908837]
  20. J Am Chem Soc. 2003 May 14;125(19):5745-53 [PMID: 12733914]
  21. J Nat Prod. 2007 Mar;70(3):461-77 [PMID: 17309302]
  22. J Bacteriol. 1999 Jan;181(2):642-7 [PMID: 9882681]
  23. J Biol Chem. 2007 Aug 31;282(35):25717-25 [PMID: 17631493]
  24. Oncotarget. 2016 May 24;7(21):30935-50 [PMID: 27105533]
  25. Appl Environ Microbiol. 2006 Jan;72(1):167-77 [PMID: 16391039]
  26. J Natl Cancer Inst. 2011 Jun 22;103(12):962-78 [PMID: 21653923]
  27. J Nat Prod. 2008 Feb;71(2):199-207 [PMID: 18197601]
  28. J Biol Chem. 2010 Sep 3;285(36):27509-15 [PMID: 20522541]
  29. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6844-51 [PMID: 26631750]
  30. Cancer Res. 2010 Feb 1;70(3):1111-9 [PMID: 20086170]
  31. Mol Gen Genet. 2001 Feb;264(6):827-35 [PMID: 11254130]
  32. Microb Biotechnol. 2011 Mar;4(2):226-38 [PMID: 21342468]
  33. J Bacteriol. 1998 May;180(9):2379-86 [PMID: 9573189]
  34. J Bacteriol. 1998 Sep;180(18):4929-37 [PMID: 9733697]
  35. Nat Prod Rep. 2010 Jun;27(6):839-68 [PMID: 20358042]
  36. Mol Gen Genet. 2000 Jan;262(6):991-1000 [PMID: 10660060]
  37. Mol Gen Genet. 1999 Mar;261(2):216-25 [PMID: 10102355]
  38. J Neurooncol. 2011 Feb;101(3):365-77 [PMID: 20556479]
  39. J Biol Chem. 2000 Feb 4;275(5):3065-74 [PMID: 10652287]
  40. J Nat Prod. 1999 Jan;62(1):119-21 [PMID: 9917296]
  41. Microbiology. 2015 Feb;161(Pt 2):272-284 [PMID: 25416691]
  42. Oncotarget. 2015 Oct 20;6(32):32856-67 [PMID: 26439989]
  43. Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20683-8 [PMID: 19075227]
  44. Appl Microbiol Biotechnol. 2006 Nov;73(1):1-14 [PMID: 17013601]
  45. Gene. 1991 Apr;100:189-94 [PMID: 1905257]
  46. Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5685-9 [PMID: 16856198]
  47. Appl Environ Microbiol. 2006 Jun;72(6):4172-83 [PMID: 16751529]
  48. Cell Prolif. 2011 Apr;44(2):166-73 [PMID: 21401758]
  49. Planta Med. 2015 Oct;81(15):1326-38 [PMID: 26393942]
  50. Gene. 1996 Jun 12;172(1):87-91 [PMID: 8654997]
  51. Appl Microbiol Biotechnol. 2018 Jan;102(2):857-869 [PMID: 29196786]
  52. Int J Nanomedicine. 2017 Jul 24;12:5255-5269 [PMID: 28769562]
  53. Cancer Chemother Pharmacol. 2017 Sep;80(3):645-652 [PMID: 28735378]
  54. Angew Chem Int Ed Engl. 2000 Feb;39(4):796-799 [PMID: 10760873]
  55. Metab Eng. 2008 Sep;10(5):281-92 [PMID: 18674632]

Grants

  1. BIO2011-25398/Ministerio de Ciencia, Innovación y Universidades
  2. FC-15-GRUPIN14-014/Gobierno del Principado de Asturias
  3. BIO2008-00269/Ministerio de Ciencia, Innovación y Universidades
  4. MR/N501839/1/Medical Research Council
  5. BB/K002341/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Antibiotics, Antineoplastic
Bacterial Proteins
Plicamycin
Polyketides
Streptomyces

Chemicals

Antibiotics, Antineoplastic
Bacterial Proteins
Polyketides
Plicamycin

Word Cloud

Created with Highcharts 10.0.0biosynthesis4-demethyl-premithramycinonemithramycinpathwayformationintermediategenesacidStreptomycesnewproductionringMithramycincompoundargillaceusgenecharacterizedanalogsimprovedrequiresExpressionsetalbusrequiredligasefourthreconstitutionminimalpolyketidesynthasecatalyzedgenerateBACKGROUND:anti-tumoraureolicfamilyproducedclusterclonedseveralpharmacologicalpropertiesgeneratedcombinatorialstudycompoundspotentialanticancerdrugsyieldssignificantlyproceedskeyExtensivestudiesHoweverremainsunclearRESULTS:cosmidcosAR7containingresulteddelimitingInactivationmtmLencodingATP-dependentacyl-CoAledaccumulationtricyclic2-hydroxy-nogalonicprovingessentialroledifferentsetscassettesSanalysisresultingmetabolitesallowedassigningfunctionsestablishingorderbiosyntheticstepsCONCLUSIONS:establishedidentifiedassemblyproposestartslineardecaketideMtmPKScyclase/aromataseMtmQcatalyzescyclizationfirstC7-C12followedsecondthirdringsC5-C14C3-C16cyclaseMtmYFormationC1-C18MtmLMtmXFinallyoxygenationreductionMtmOIIMtmTI/MtmTIIrespectivelyfinalstabletetracyclicUnderstandingaffordsenhancedpossibilitiesimprovetitersbioactivityinvestigationHeterologousaglyconantitumorAcyl-CoAAureolicCyclasePolyketidePremithramycinone

Similar Articles

Cited By