Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease.

Elisa Giacomelli, Viviana Meraviglia, Giulia Campostrini, Amy Cochrane, Xu Cao, Ruben W J van Helden, Ana Krotenberg Garcia, Maria Mircea, Sarantos Kostidis, Richard P Davis, Berend J van Meer, Carolina R Jost, Abraham J Koster, Hailiang Mei, David G Míguez, Aat A Mulder, Mario Ledesma-Terrón, Giulio Pompilio, Luca Sala, Daniela C F Salvatori, Roderick C Slieker, Elena Sommariva, Antoine A F de Vries, Martin Giera, Stefan Semrau, Leon G J Tertoolen, Valeria V Orlova, Milena Bellin, Christine L Mummery
Author Information
  1. Elisa Giacomelli: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  2. Viviana Meraviglia: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  3. Giulia Campostrini: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  4. Amy Cochrane: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  5. Xu Cao: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  6. Ruben W J van Helden: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  7. Ana Krotenberg Garcia: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  8. Maria Mircea: Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands.
  9. Sarantos Kostidis: Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  10. Richard P Davis: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  11. Berend J van Meer: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  12. Carolina R Jost: Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  13. Abraham J Koster: Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  14. Hailiang Mei: Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  15. David G Míguez: Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  16. Aat A Mulder: Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  17. Mario Ledesma-Terrón: Centro de Biologia Molecular Severo Ochoa, Departamento de Física de la Materia Condensada, Instituto Nicolas Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
  18. Giulio Pompilio: Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
  19. Luca Sala: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  20. Daniela C F Salvatori: Central Laboratory Animal Facility, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  21. Roderick C Slieker: Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, VU University Medical Center, 1007 Amsterdam, the Netherlands.
  22. Elena Sommariva: Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy.
  23. Antoine A F de Vries: Department of Cardiology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  24. Martin Giera: Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  25. Stefan Semrau: Leiden Institute of Physics, Leiden University, 2333 Leiden, the Netherlands.
  26. Leon G J Tertoolen: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands.
  27. Valeria V Orlova: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands. Electronic address: v.orlova@lumc.nl.
  28. Milena Bellin: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Biology, University of Padua, 35121 Padua, Italy; Veneto Institute of Molecular Medicine, 35129 Padua, Italy. Electronic address: m.bellin@lumc.nl.
  29. Christine L Mummery: Department of Anatomy and Embryology, Leiden University Medical Center, 2333 Leiden, the Netherlands; Department of Applied Stem Cell Technologies, University of Twente, 7500 Enschede, the Netherlands. Electronic address: c.l.mummery@lumc.nl.

Abstract

Cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) are functionally immature, but this is improved by incorporation into engineered tissues or forced contraction. Here, we showed that tri-cellular combinations of hiPSC-derived CMs, cardiac fibroblasts (CFs), and cardiac endothelial cells also enhance maturation in easily constructed, scaffold-free, three-dimensional microtissues (MTs). hiPSC-CMs in MTs with CFs showed improved sarcomeric structures with T-tubules, enhanced contractility, and mitochondrial respiration and were electrophysiologically more mature than MTs without CFs. Interactions mediating maturation included coupling between hiPSC-CMs and CFs through connexin 43 (CX43) gap junctions and increased intracellular cyclic AMP (cAMP). Scaled production of thousands of hiPSC-MTs was highly reproducible across lines and differentiated cell batches. MTs containing healthy-control hiPSC-CMs but hiPSC-CFs from patients with arrhythmogenic cardiomyopathy strikingly recapitulated features of the disease. Our MT model is thus a simple and versatile platform for modeling multicellular cardiac diseases that will facilitate industry and academic engagement in high-throughput molecular screening.

Keywords

References

  1. FEBS Lett. 1997 Sep 29;415(2):163-8 [PMID: 9350988]
  2. Sci Rep. 2016 May 31;6:26744 [PMID: 27244564]
  3. Anal Chim Acta. 2017 Aug 8;980:1-24 [PMID: 28622799]
  4. World J Stem Cells. 2015 Mar 26;7(2):329-42 [PMID: 25815118]
  5. Nat Commun. 2019 Sep 20;10(1):4325 [PMID: 31541103]
  6. Trends Mol Med. 2016 Feb;22(2):99-114 [PMID: 26776094]
  7. Stem Cell Res. 2013 Sep;11(2):806-19 [PMID: 23792436]
  8. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  9. Int J Mol Sci. 2017 Aug 30;18(9): [PMID: 28867785]
  10. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5383-92 [PMID: 25453094]
  11. Circulation. 2011 May 17;123(19):2083-93 [PMID: 21537003]
  12. Cardiovasc Res. 2018 Dec 1;114(14):1848-1859 [PMID: 29917042]
  13. Methods Mol Biol. 2016;1353:163-80 [PMID: 25626427]
  14. Tissue Eng Part A. 2019 May;25(9-10):725-735 [PMID: 30520705]
  15. Development. 2015 Sep 15;142(18):3231-8 [PMID: 26209647]
  16. Physiology (Bethesda). 2007 Jun;22:167-73 [PMID: 17557937]
  17. BMC Dev Biol. 2010 Sep 15;10:98 [PMID: 20843318]
  18. Nature. 2010 Jun 10;465(7299):808-12 [PMID: 20535210]
  19. Stem Cell Reports. 2017 Dec 12;9(6):1754-1764 [PMID: 29173898]
  20. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  21. Compr Physiol. 2015 Apr;5(2):887-909 [PMID: 25880517]
  22. J Biol Chem. 1990 Aug 15;265(23):13809-17 [PMID: 1696258]
  23. J Mol Cell Cardiol. 2016 May;94:22-31 [PMID: 26996756]
  24. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  25. N Engl J Med. 2010 Oct 7;363(15):1397-409 [PMID: 20660394]
  26. Nat Protoc. 2008;3(5):768-76 [PMID: 18451785]
  27. Am J Physiol Heart Circ Physiol. 2017 Oct 1;313(4):H810-H827 [PMID: 28710068]
  28. Eur Heart J. 2016 Jun 14;37(23):1835-46 [PMID: 26590176]
  29. Aging (Albany NY). 2012 Nov;4(11):803-822 [PMID: 23362510]
  30. J Mol Cell Cardiol. 2016 Feb;91:238-46 [PMID: 26774702]
  31. Genom Data. 2014 Oct 12;2:345-50 [PMID: 26484127]
  32. BMC Bioinformatics. 2010 Jul 02;11:367 [PMID: 20598126]
  33. Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2785-94 [PMID: 25964336]
  34. Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1728-48 [PMID: 26524115]
  35. Cell Commun Adhes. 2011 Aug;18(4):73-84 [PMID: 21985446]
  36. Nat Rev Cardiol. 2017 Aug;14(8):484-491 [PMID: 28436487]
  37. Sci Rep. 2015 Mar 09;5:8883 [PMID: 25748532]
  38. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  39. J Cell Biol. 2012 Aug 6;198(3):457-69 [PMID: 22869601]
  40. Physiol Rev. 1999 Oct;79(4):1089-125 [PMID: 10508230]
  41. Bioinformatics. 2017 Oct 1;33(19):3131-3133 [PMID: 28605519]
  42. Eur Heart J. 2012 Aug;33(15):1942-53 [PMID: 22240500]
  43. Circ Res. 2011 Jul 8;109(2):193-201 [PMID: 21617128]
  44. Stem Cells Dev. 2017 Apr 1;26(7):528-540 [PMID: 27927069]
  45. Circulation. 2017 May 9;135(19):1832-1847 [PMID: 28167635]
  46. Circ Res. 2014 Jan 31;114(3):511-23 [PMID: 24481842]
  47. Curr Protoc Hum Genet. 2017 Oct 18;95:21.9.1-21.9.22 [PMID: 29044469]
  48. Bioinformatics. 2016 Nov 15;32(22):3532-3534 [PMID: 27412086]
  49. Circ Res. 2009 May 8;104(9):1076-84 [PMID: 19359597]
  50. Cell Commun Adhes. 2014 Feb;21(1):43-54 [PMID: 24460200]
  51. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  52. J Clin Invest. 2001 Aug;108(3):407-14 [PMID: 11489934]
  53. Herzschrittmacherther Elektrophysiol. 2018 Mar;29(1):62-69 [PMID: 29392412]
  54. Cell Mol Life Sci. 2017 Oct;74(20):3711-3739 [PMID: 28573431]
  55. Stem Cell Reports. 2016 Jun 14;6(6):885-896 [PMID: 27161364]
  56. Tissue Eng Part C Methods. 2012 Jan;18(1):21-32 [PMID: 21851323]
  57. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  58. Cardiovasc Res. 2013 Nov 1;100(2):231-40 [PMID: 23929525]
  59. Bioinformatics. 2010 Apr 1;26(7):873-81 [PMID: 20147302]
  60. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  61. Br J Pharmacol. 2015 Feb;172(4):957-74 [PMID: 25302413]
  62. Sci Rep. 2017 Jul 14;7(1):5464 [PMID: 28710467]
  63. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  64. Cardiovasc Res. 2017 Jan;113(1):102-111 [PMID: 28069705]
  65. Circ Res. 2018 Feb 2;122(3):e5-e16 [PMID: 29282212]
  66. Biochem J. 2012 Jun 1;444(2):343-55 [PMID: 22390138]
  67. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  68. Curr Protoc Mol Biol. 2015 Jan 05;109:14.17.1-14.17.13 [PMID: 25559103]
  69. Genome Biol. 2016 Apr 27;17:75 [PMID: 27122128]
  70. Development. 2016 Feb 1;143(3):387-97 [PMID: 26839342]
  71. Toxicol Sci. 2017 Feb;155(2):444-457 [PMID: 28069985]
  72. Development. 2017 Mar 15;144(6):1008-1017 [PMID: 28279973]
  73. Dis Model Mech. 2017 Jul 1;10(7):823-835 [PMID: 28679668]
  74. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  75. Development. 2015 Nov 1;142(21):3630-6 [PMID: 26395486]
  76. Circ Cardiovasc Genet. 2013 Dec;6(6):557-68 [PMID: 24200905]
  77. Circulation. 2003 Jun 3;107(21):2733-40 [PMID: 12742992]
  78. Circ Res. 2016 Feb 5;118(3):400-9 [PMID: 26635390]
  79. Cell. 1978 Jul;14(3):741-59 [PMID: 688392]
  80. Circ Res. 2017 Jul 7;121(2):181-195 [PMID: 28684623]
  81. Hum Mol Genet. 2013 Jan 15;22(2):372-83 [PMID: 23100327]
  82. Stem Cell Reports. 2016 Jul 12;7(1):29-42 [PMID: 27211213]
  83. Br J Pharmacol. 2017 Nov;174(21):3749-3765 [PMID: 27641943]
  84. Nat Med. 2014 Jun;20(6):616-23 [PMID: 24813252]
  85. Stem Cells. 2009 Sep;27(9):2163-74 [PMID: 19658189]
  86. Genome Biol. 2006;7(10):R100 [PMID: 17076895]
  87. Circ Res. 2007 Sep 28;101(7):703-11 [PMID: 17673670]
  88. Hum Mutat. 2015 Apr;36(4):403-10 [PMID: 25676813]

MeSH Term

Cell Differentiation
Endothelial Cells
Heart Diseases
Humans
Induced Pluripotent Stem Cells
Myocytes, Cardiac
Stromal Cells

Word Cloud

Created with Highcharts 10.0.0cardiacCFsMTsmaturationhiPSC-CMsCMscellsimprovedshowedfibroblastsgapcyclicAMPcAMParrhythmogeniccardiomyopathydiseasemodelCardiachuman-induced-pluripotent-stem-cell-derivedCardiomyocyteshumaninducedpluripotentstemhiPSCsfunctionallyimmatureincorporationengineeredtissuesforcedcontractiontri-cellularcombinationshiPSC-derivedendothelialalsoenhanceeasilyconstructedscaffold-freethree-dimensionalmicrotissuessarcomericstructuresT-tubulesenhancedcontractilitymitochondrialrespirationelectrophysiologicallymaturewithoutInteractionsmediatingincludedcouplingconnexin43CX43junctionsincreasedintracellularScaledproductionthousandshiPSC-MTshighlyreproducibleacrosslinesdifferentiatedcellbatchescontaininghealthy-controlhiPSC-CFspatientsstrikinglyrecapitulatedfeaturesMTthussimpleversatileplatformmodelingmulticellulardiseaseswillfacilitateindustryacademicengagementhigh-throughputmolecularscreeningHuman-iPSC-DerivedStromalCellsEnhanceMaturation3DMicrotissuesRevealNon-cardiomyocyteContributionsHeartDiseasemicrotissuecardiomyocytecell-cellinteractionjunctioncardiomyocytes

Similar Articles

Cited By