CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis.

Mohammad Golam Sabbir
Author Information
  1. Mohammad Golam Sabbir: Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada. mgsabbir@sbrc.ca. ORCID

Abstract

BACKGROUND: Circulatory iron is a hazardous biometal. Therefore, iron is transported in a redox-safe state by a serum glycoprotein - transferrin (TF). Different organs acquire iron from the systemic circulation through a tightly regulated mechanism at the blood-tissue interface which involves receptor-mediated internalization of TF. Thus, abnormal TF trafficking may lead to iron dyshomeostasis associated with several diseases including neurodegeneration. Iron -induced toxicity can cause neuronal damage to iron-sensitive brain regions. Recently, it was discovered that CAMKK2, a calcium (Ca)/calmodulin-activated kinase, controls receptor-mediated TF trafficking in mouse tissues, specifically in the brain. The biological function of CAMKK2 is mediated through multiple downstream effectors. Both CAMKK2 and one of its downstream kinase, CAMK4, exhibit overlapping expression in mouse brain. The role of CAMK4 in vesicular transport has been reported and loss of CAMKK2 or CAMK4 leads to cognitive defects in mouse. Therefore, it was hypothesized that CAMKK2-CAMK4 signaling regulates receptor-mediated TF trafficking and iron homeostasis which may be responsible for the neuronal malfunction observed in CAMKK2- or CAMK4-deficient mice.
METHODS: CAMK4 mouse was used to study tissue-specific turnover of TF, TF-receptor (TFRC) and iron. CRISPR/Cas9-based CAMKK2 and/or CAMK4 deleted human embryonic kidney-derived HEK293 cell clones were used to study the molecular defects in receptor-mediated TF trafficking. Further, a "zero functional G protein" condition in HEK293 cell was exploited to study CAMKK2-CAMK4 signaling-mediated regulation of intracellular Ca homeostasis which was linked to calcium signaling during TF trafficking.
RESULTS: Loss of CAMK4 leads to abnormal post-translational modifications (PTMs) and turnover of TF in mouse cerebellum and liver which was associated with iron dyshomeostasis in these tissues. The HEK293 cell-based study revealed that the absence of CAMKK2-CAMK4 signaling altered intracellular Ca homeostasis and lead to abnormal calcium signaling during TF trafficking. Also, CAMKK2-CAMK4 signaling deficiency affected the molecular interaction of TF and TF-receptor-associated protein complexes which indicated a potential failure in the recruitment of interacting proteins due to differential PTMs in TF.
CONCLUSION: Overall, this study established a novel mechanistic link between intracellular Ca level, receptor-mediated TF trafficking, and iron homeostasis, all regulated by CAMKK2-CAMK4 signaling. Video Abstract.

Keywords

References

  1. J Neurochem. 2010 Apr;113(2):313-28 [PMID: 20132470]
  2. Bioeng Bugs. 2011 Sep-Oct;2(5):247-59 [PMID: 22002082]
  3. Biochemistry. 1997 Oct 21;36(42):12823-7 [PMID: 9335539]
  4. Dement Geriatr Cogn Disord. 1997 May-Jun;8(3):157-62 [PMID: 9137893]
  5. J Biol Chem. 1994 Sep 30;269(39):24504-10 [PMID: 7929115]
  6. Front Mol Neurosci. 2014 May 21;7:46 [PMID: 24904272]
  7. Mol Cell Proteomics. 2013 Mar;12(3):825-31 [PMID: 23266961]
  8. Eur J Biochem. 1997 Dec 15;250(3):689-97 [PMID: 9461291]
  9. Br J Pharmacol. 2005 Jun;145(4):405-14 [PMID: 15806115]
  10. Antioxid Redox Signal. 2013 Jun 20;18(18):2473-507 [PMID: 23199217]
  11. Neuropharmacology. 2018 Dec;143:268-281 [PMID: 30248305]
  12. Magn Reson Imaging. 1997;15(1):29-35 [PMID: 9084022]
  13. Biochim Biophys Acta. 1997 Mar 14;1331(1):1-40 [PMID: 9325434]
  14. Br J Pharmacol. 2008 Mar;153(6):1324-30 [PMID: 18204483]
  15. Trends Endocrinol Metab. 2016 Oct;27(10):706-718 [PMID: 27449752]
  16. J Cell Biol. 1986 Sep;103(3):851-6 [PMID: 3017998]
  17. Adv Biol Regul. 2016 Sep;62:37-49 [PMID: 27220739]
  18. Prog Med Chem. 2005;43:105-36 [PMID: 15850824]
  19. J Biol Chem. 2003 May 30;278(22):20083-90 [PMID: 12639953]
  20. J Biol Chem. 2011 Aug 12;286(32):28066-79 [PMID: 21669867]
  21. Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 [PMID: 25514926]
  22. J Neurol Sci. 1989 Nov;93(2-3):277-87 [PMID: 2556503]
  23. J Proteome Res. 2014 Nov 7;13(11):4581-93 [PMID: 24927040]
  24. Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70 [PMID: 22135298]
  25. J Neurochem. 2008 Mar;104(6):1433-9 [PMID: 18088381]
  26. Front Aging Neurosci. 2018 Nov 27;10:396 [PMID: 30542279]
  27. Nat Genet. 2000 Aug;25(4):448-52 [PMID: 10932193]
  28. J Am Chem Soc. 1946 Mar;68:459-75 [PMID: 21015743]
  29. J Biochem. 1997 Sep;122(3):498-505 [PMID: 9348075]
  30. J Alzheimers Dis Parkinsonism. 2017 Aug;7(5): [PMID: 29214114]
  31. EMBO J. 1989 Aug;8(8):2231-40 [PMID: 2507316]
  32. J Steroid Biochem Mol Biol. 2019 Jul;191:105376 [PMID: 31067491]
  33. Mol Endocrinol. 2012 Feb;26(2):281-91 [PMID: 22240810]
  34. Front Oncol. 2017 Jul 05;7:140 [PMID: 28725634]
  35. Mol Reprod Dev. 2004 Jul;68(3):269-78 [PMID: 15112319]
  36. J Neurosci. 2000 Nov 15;20(22):RC107 [PMID: 11069976]
  37. Hepatology. 2015 Aug;62(2):505-20 [PMID: 25847065]
  38. PLoS Comput Biol. 2015 Apr 17;11(4):e1004130 [PMID: 25884760]
  39. Front Endocrinol (Lausanne). 2019 May 22;10:328 [PMID: 31191455]
  40. J Biol Chem. 2000 Aug 4;275(31):24185-90 [PMID: 10811637]
  41. Nature. 2005 Jul 7;436(7047):78-86 [PMID: 15889048]
  42. RNA Biol. 2011 Nov-Dec;8(6):1061-72 [PMID: 21957496]
  43. Nat Commun. 2017 Feb 09;8:14335 [PMID: 28181498]
  44. Mol Cell Proteomics. 2012 Dec;11(12):1578-85 [PMID: 22790023]
  45. Nat Rev Neurosci. 2013 Aug;14(8):551-64 [PMID: 23820773]
  46. J Neurochem. 2012 Jan;120 Suppl 1:22-33 [PMID: 22122190]
  47. EMBO Rep. 2007 Mar;8(3):236-40 [PMID: 17330068]
  48. Drug Discov Today. 2005 Feb 15;10(4):267-73 [PMID: 15708745]
  49. Trends Cell Biol. 2012 Mar;22(3):169-75 [PMID: 22189166]
  50. Receptors Channels. 2003;9(4):241-60 [PMID: 12893537]
  51. Pharmacol Rev. 2010 Jun;62(2):305-30 [PMID: 20427692]
  52. Proteomics. 2015 Nov;15(21):3603-12 [PMID: 26223664]
  53. Genes Dev. 2010 Oct 15;24(20):2330-42 [PMID: 20952540]
  54. J Neurosci. 2003 Oct 29;23(30):9752-60 [PMID: 14586002]
  55. Clin Neuropathol. 1989 Jul-Aug;8(4):188-91 [PMID: 2528435]
  56. Proteomics. 2009 Dec;9(23):5214-23 [PMID: 19834896]
  57. Nat Commun. 2018 Feb 28;9(1):876 [PMID: 29491460]
  58. Dev Growth Differ. 2014 Jun;56(5):335-48 [PMID: 24844647]
  59. J Biol Chem. 2004 Apr 9;279(15):15411-9 [PMID: 14754892]
  60. Acta Neuropathol. 1993;85(6):682 [PMID: 8337947]
  61. Front Neurosci. 2019 Mar 01;13:180 [PMID: 30881284]
  62. Nat Rev Drug Discov. 2014 Jul;13(7):549-60 [PMID: 24903776]
  63. SLAS Discov. 2017 Aug;22(7):848-858 [PMID: 28267930]
  64. Nat Struct Mol Biol. 2018 Jul;25(7):631-640 [PMID: 29967540]
  65. Brain. 2016 May;139(Pt 5):1314-8 [PMID: 27189578]
  66. Brain Res. 1986 Mar 19;368(2):319-28 [PMID: 3697729]
  67. Biochim Biophys Acta. 2013 Jul;1828(7):1629-43 [PMID: 23063655]
  68. J Lab Clin Med. 1987 Dec;110(6):690-705 [PMID: 3681112]
  69. J Biol Chem. 2001 Aug 17;276(33):31113-23 [PMID: 11395482]
  70. J Neurosci. 2004 Apr 14;24(15):3786-94 [PMID: 15084659]
  71. Nat Rev Drug Discov. 2007 Sep;6(9):721-33 [PMID: 17762886]
  72. Expert Opin Drug Metab Toxicol. 2018 Jan;14(1):83-90 [PMID: 29233065]
  73. Future Med Chem. 2016 May;8(7):817-32 [PMID: 27149324]
  74. J Biol Chem. 1987 Apr 15;262(11):5293-7 [PMID: 3558394]
  75. J Biol Chem. 2000 Apr 28;275(17):12900-8 [PMID: 10777589]
  76. Methods Mol Biol. 1999;112:531-52 [PMID: 10027275]
  77. PLoS Biol. 2006 Apr;4(4):e86 [PMID: 16602821]
  78. Mol Pharmacol. 2015 Jun;87(6):890-906 [PMID: 25549669]
  79. Pharmacol Res. 2015 Jul;97:16-26 [PMID: 25829335]
  80. Front Neurosci. 2018 Jun 26;12:402 [PMID: 29997469]
  81. Cell. 2004 Feb 20;116(4):565-76 [PMID: 14980223]
  82. Nucleic Acids Res. 1995 Jun 25;23(12):2206-11 [PMID: 7610049]
  83. Front Mol Biosci. 2018 Nov 20;5:99 [PMID: 30525042]
  84. J Cell Biol. 1989 Apr;108(4):1245-56 [PMID: 2538479]
  85. J Biol Chem. 2001 Jun 29;276(26):24044-50 [PMID: 11306573]
  86. Brain. 2018 Jan 1;141(1):37-47 [PMID: 29053771]
  87. Biochim Biophys Acta. 2015 May;1853(5):1130-44 [PMID: 25661197]
  88. Nat Neurosci. 2004 May;7(5):483 [PMID: 15114362]
  89. J Biol Chem. 2012 Sep 14;287(38):31658-65 [PMID: 22778263]
  90. Blood. 2000 Aug 1;96(3):1113-8 [PMID: 10910930]
  91. ACS Chem Neurosci. 2013 Feb 20;4(2):350-60 [PMID: 23421686]
  92. Anal Chem. 2005 May 1;77(9):2745-55 [PMID: 15859589]
  93. Anal Biochem. 2010 Oct 1;405(1):67-72 [PMID: 20488157]
  94. J Biol Chem. 2011 Nov 18;286(46):39726-37 [PMID: 21940627]
  95. Front Mol Neurosci. 2011 Aug 26;4:17 [PMID: 21904524]
  96. J Alzheimers Dis. 2009;16(4):879-95 [PMID: 19387120]
  97. Cell Metab. 2008 May;7(5):377-88 [PMID: 18460329]
  98. Nat Commun. 2017 Oct 27;8(1):1171 [PMID: 29079793]
  99. Endocrinology. 2011 Oct;152(10):3668-79 [PMID: 21862616]
  100. Nat Commun. 2018 Jan 23;9(1):341 [PMID: 29362459]
  101. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3723-7 [PMID: 3459151]
  102. Traffic. 2002 Apr;3(4):298-307 [PMID: 11929611]

MeSH Term

Animals
Calcium-Calmodulin-Dependent Protein Kinase Kinase
Calcium-Calmodulin-Dependent Protein Kinase Type 4
HEK293 Cells
Humans
Iron
Mice
Mice, Inbred C57BL
Mice, Knockout
Transferrin

Chemicals

Transferrin
Iron
CAMK4 protein, human
CAMKK2 protein, human
Calcium-Calmodulin-Dependent Protein Kinase Kinase
Calcium-Calmodulin-Dependent Protein Kinase Type 4
Camk4 protein, mouse
Camkk2 protein, mouse

Word Cloud

Created with Highcharts 10.0.0TFirontraffickingCAMK4signalingCAMKK2CAMKK2-CAMK4receptor-mediatedmousehomeostasisstudytransferrinabnormalbraincalciumCaturnoverHEK293intracellularThereforeregulatedmayleaddyshomeostasisassociatedneuronalkinasetissuesdownstreamleadsdefectsregulatesusedcellmolecularPTMscerebellumliverBACKGROUND:Circulatoryhazardousbiometaltransportedredox-safestateserumglycoprotein-Differentorgansacquiresystemiccirculationtightlymechanismblood-tissueinterfaceinvolvesinternalizationThusseveraldiseasesincludingneurodegenerationIron-inducedtoxicitycancausedamageiron-sensitiveregionsRecentlydiscovered/calmodulin-activatedcontrolsspecificallybiologicalfunctionmediatedmultipleeffectorsoneexhibitoverlappingexpressionrolevesiculartransportreportedlosscognitivehypothesizedresponsiblemalfunctionobservedCAMKK2-CAMK4-deficientmiceMETHODS:tissue-specificTF-receptorTFRCCRISPR/Cas9-basedand/ordeletedhumanembryonickidney-derivedclones"zerofunctionalGprotein"conditionexploitedsignaling-mediatedregulationlinkedRESULTS:Losspost-translationalmodificationscell-basedrevealedabsencealteredAlsodeficiencyaffectedinteractionTF-receptor-associatedproteincomplexesindicatedpotentialfailurerecruitmentinteractingproteinsduedifferentialCONCLUSION:OverallestablishednovelmechanisticlinkCa levelVideoAbstractiron homeostasisglycolysisrespirationtransferrin-receptor

Similar Articles

Cited By