Effects of Cardiac Sympathetic Neurodegeneration and PPAR Activation on Rhesus Macaque Whole Blood miRNA and mRNA Expression Profiles.

Jeanette M Metzger, Mary S Lopez, Jenna K Schmidt, Megan E Murphy, Raghu Vemuganti, Marina E Emborg
Author Information
  1. Jeanette M Metzger: Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, 53706 WI, USA.
  2. Mary S Lopez: Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, 53706 WI, USA.
  3. Jenna K Schmidt: Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, 53706 WI, USA.
  4. Megan E Murphy: Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, 53706 WI, USA.
  5. Raghu Vemuganti: Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, 53706 WI, USA.
  6. Marina E Emborg: Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, 53706 WI, USA. ORCID

Abstract

Degeneration of Sympathetic innervation of the heart occurs in numerous diseases, including diabetes, idiopathic REM sleep disorder, and Parkinson's disease (PD). In PD, cardiac Sympathetic denervation occurs in 80-90% of patients and can begin before the onset of motor symptoms. Today, there are no disease-modifying therapies for cardiac Sympathetic neurodegeneration, and biomarkers are limited to radioimaging techniques. Analysis of expression levels of coding mRNA and noncoding RNAs, such as microRNAs (miRNAs), can uncover pathways involved in disease, leading to the discovery of biomarkers, pathological mechanisms, and potential drug targets. Whole blood in particular is a clinically relevant source of biomarkers, as blood sampling is inexpensive and simple to perform. Our research group has previously developed a nonhuman primate model of cardiac Sympathetic denervation by intravenous administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA). In this rhesus Macaque () model, imaging with positron emission tomography showed that oral administration of the peroxisome proliferator-activated receptor gamma (PPAR) agonist pioglitazone ( = 5; 5 mg/kg daily) significantly decreased cardiac inflammation and oxidative stress compared to placebo ( = 5). Here, we report our analysis of miRNA and mRNA expression levels over time in the whole blood of these monkeys. Differential expression of three miRNAs was induced by 6-OHDA (mml-miR-16-2-3p, mml-miR-133d-3p, and mml-miR-1262-5p) and two miRNAs by pioglitazone (mml-miR-204-5p and mml-miR-146b-5p) at 12 weeks posttoxin, while expression of mRNAs involved in inflammatory cytokines and receptors was not significantly affected. Overall, this study contributes to the characterization of rhesus coding and noncoding RNA profiles in normal and disease-like conditions, which may facilitate the identification and clinical translation of biomarkers of cardiac neurodegeneration and neuroprotection.

References

  1. J Clin Hypertens (Greenwich). 2016 Jun;18(6):497-502 [PMID: 26916982]
  2. Neurology. 2006 Dec 26;67(12):2236-8 [PMID: 17190953]
  3. Sci Rep. 2016 Aug 12;6:31584 [PMID: 27515369]
  4. J Asthma. 2012 Apr;49(3):219-26 [PMID: 22316092]
  5. Metabolism. 1999 Jan;48(1):92-101 [PMID: 9920151]
  6. BMC Bioinformatics. 2011 Apr 19;12:107 [PMID: 21504621]
  7. Mult Scler. 2014 Mar;20(3):295-303 [PMID: 23836875]
  8. Mol Cell Biol. 2004 Jul;24(13):5797-807 [PMID: 15199136]
  9. BMC Mol Biol. 2008 Sep 10;9:78 [PMID: 18782457]
  10. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5300-5 [PMID: 19286971]
  11. Sci Rep. 2017 Mar 17;7:44132 [PMID: 28303893]
  12. J Biol Chem. 2015 Jan 30;290(5):2831-41 [PMID: 25505246]
  13. Nucleic Acids Res. 2017 Sep 19;45(16):9290-9301 [PMID: 28934507]
  14. Atherosclerosis. 2014 Jun;234(2):329-34 [PMID: 24727234]
  15. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  16. Trends Genet. 2019 Feb;35(2):104-117 [PMID: 30563726]
  17. J Immunol. 2010 Jan 15;184(2):540-4 [PMID: 20018617]
  18. J Biotechnol. 2011 Mar 20;152(3):96-101 [PMID: 21295623]
  19. Gene. 2017 Aug 30;626:64-69 [PMID: 28495174]
  20. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D158-62 [PMID: 16381836]
  21. ILAR J. 2013;54(2):154-65 [PMID: 24174439]
  22. Blood. 2012 Jan 19;119(3):646-8 [PMID: 22262739]
  23. PLoS One. 2014 Mar 07;9(3):e91041 [PMID: 24608128]
  24. Cleve Clin J Med. 2007 Feb;74 Suppl 1:S91-4 [PMID: 17455553]
  25. Noncoding RNA. 2017 Jun 26;3(3): [PMID: 29657293]
  26. Genome Res. 2014 Jan;24(1):14-24 [PMID: 24092820]
  27. Sci Transl Med. 2018 Apr 25;10(438): [PMID: 29695452]
  28. J Immunol. 1995 Nov 15;155(10):4613-20 [PMID: 7594460]
  29. Prog Mol Biol Transl Sci. 2017;146:47-94 [PMID: 28253991]
  30. J Cancer. 2018 Oct 11;9(21):3991-3999 [PMID: 30410604]
  31. EMBO J. 2001 Jun 1;20(11):2943-53 [PMID: 11387227]
  32. J Parkinsons Dis. 2012;2(4):321-31 [PMID: 23938262]
  33. Sci Rep. 2019 Sep 24;9(1):13759 [PMID: 31551498]
  34. PLoS One. 2011;6(10):e25443 [PMID: 22003392]
  35. Lancet. 2008 Mar 29;371(9618):1126-35 [PMID: 18374844]
  36. Mov Disord. 2015 Oct;30(12):1591-601 [PMID: 26474316]
  37. RNA Biol. 2018;15(8):1133-1145 [PMID: 30223713]
  38. Transl Res. 2013 Mar;161(3):181-8 [PMID: 23138105]
  39. J Clin Invest. 2014 Aug;124(8):3514-28 [PMID: 24960162]
  40. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11499-504 [PMID: 23798430]
  41. Parkinsons Dis. 2011;2011:216298 [PMID: 21603248]
  42. Blood. 2016 Sep 8;128(10):1424-35 [PMID: 27485827]
  43. Sci Rep. 2018 Jul 9;8(1):10306 [PMID: 29985466]
  44. PLoS One. 2008 Jun 04;3(6):e2360 [PMID: 18523662]
  45. J Appl Physiol (1985). 2012 Nov;113(10):1659-68 [PMID: 22678960]
  46. Biomed Pharmacother. 2016 Aug;82:459-66 [PMID: 27470385]
  47. Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S210-2 [PMID: 22166438]
  48. Mol Biol Rep. 2019 Oct;46(5):5511-5516 [PMID: 31154603]
  49. Circ J. 2015;79(4):880-8 [PMID: 25737017]
  50. Dig Dis Sci. 2017 Aug;62(8):1985-1994 [PMID: 28660489]
  51. Mov Disord. 2003 Aug;18(8):890-7 [PMID: 12889078]
  52. J Neurochem. 2007 Oct;103(1):145-56 [PMID: 17573824]
  53. Neurobiol Dis. 2012 Jun;46(3):572-80 [PMID: 22094370]
  54. BMC Genomics. 2008 Jan 10;9:8 [PMID: 18186931]
  55. Oral Dis. 2014 Jan;20(1):55-61 [PMID: 23465220]
  56. J Neurol Neurosurg Psychiatry. 1999 Aug;67(2):189-94 [PMID: 10406987]
  57. Genome Biol Evol. 2012;4(4):552-64 [PMID: 22454130]
  58. PLoS One. 2020 Jan 7;15(1):e0226999 [PMID: 31910209]
  59. Rev Neurol. 2014 Dec 1;59(11):508-16 [PMID: 25418146]
  60. Clin Immunol. 2013 Oct;149(1):119-32 [PMID: 23962407]
  61. Fundam Clin Pharmacol. 2007 Aug;21(4):337-47 [PMID: 17635171]
  62. Physiol Genomics. 2017 Apr 1;49(4):243-252 [PMID: 28213571]
  63. Biomed Res Int. 2015;2015:206849 [PMID: 26060813]
  64. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  65. Front Neuroanat. 2015 Jul 08;9:91 [PMID: 26217195]
  66. Front Neurosci. 2018 Sep 05;12:625 [PMID: 30233304]
  67. Annu Rev Cell Dev Biol. 2007;23:175-205 [PMID: 17506695]
  68. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  69. Biochem Biophys Res Commun. 2017 May 6;486(3):726-731 [PMID: 28342874]
  70. Nucleic Acids Res. 2000 Mar 15;28(6):1348-54 [PMID: 10684929]
  71. BMC Cancer. 2018 Oct 29;18(1):1048 [PMID: 30373600]
  72. Int J Mol Med. 2013 Apr;31(4):797-802 [PMID: 23443577]
  73. PLoS One. 2012;7(4):e35371 [PMID: 22539969]
  74. J Clin Lab Anal. 2004;18(1):19-26 [PMID: 14730553]
  75. Front Biosci. 2008 Jan 01;13:1813-26 [PMID: 17981670]
  76. Semin Immunopathol. 2013 Sep;35(5):601-12 [PMID: 23732506]
  77. Transfusion. 2017 Dec;57(12):2995-3000 [PMID: 28940437]
  78. Circ Cardiovasc Imaging. 2011 Mar;4(2):87-93 [PMID: 21193691]
  79. J Immunol. 2013 May 1;190(9):4717-24 [PMID: 23543756]
  80. NPJ Parkinsons Dis. 2018 Jul 13;4:22 [PMID: 30038956]
  81. PLoS One. 2014 Jan 27;9(1):e87508 [PMID: 24475299]

Grants

  1. F31 HL136047/NHLBI NIH HHS
  2. P51 OD011106/NIH HHS

MeSH Term

Animals
Biomarkers
Cytokines
Heart
Inflammation
Macaca mulatta
Male
MicroRNAs
Neurodegenerative Diseases
Oxidative Stress
Oxidopamine
PPAR gamma
Parkinson Disease
RNA, Messenger
Transcriptome

Chemicals

Biomarkers
Cytokines
MicroRNAs
PPAR gamma
RNA, Messenger
Oxidopamine

Word Cloud

Created with Highcharts 10.0.0cardiacsympatheticbiomarkersexpressionmRNAmiRNAsbloodoccursdiseasePDdenervationcanneurodegenerationlevelscodingnoncodinginvolvedWholemodeladministration6-OHDArhesusPPARpioglitazone=5significantlymiRNADegenerationinnervationheartnumerousdiseasesincludingdiabetesidiopathicREMsleepdisorderParkinson's80-90%patientsbeginonsetmotorsymptomsTodaydisease-modifyingtherapieslimitedradioimagingtechniquesAnalysisRNAsmicroRNAsuncoverpathwaysleadingdiscoverypathologicalmechanismspotentialdrugtargetsparticularclinicallyrelevantsourcesamplinginexpensivesimpleperformresearchgrouppreviouslydevelopednonhumanprimateintravenouscatecholaminergicneurotoxin6-hydroxydopaminemacaqueimagingpositronemissiontomographyshowedoralperoxisomeproliferator-activatedreceptorgammaagonist5 mg/kgdailydecreasedinflammationoxidativestresscomparedplaceboreportanalysistimewholemonkeysDifferentialthreeinducedmml-miR-16-2-3pmml-miR-133d-3pmml-miR-1262-5ptwomml-miR-204-5pmml-miR-146b-5p12weeksposttoxinmRNAsinflammatorycytokinesreceptorsaffectedOverallstudycontributescharacterizationRNAprofilesnormaldisease-likeconditionsmayfacilitateidentificationclinicaltranslationneuroprotectionEffectsCardiacSympatheticNeurodegenerationActivationRhesusMacaqueBloodExpressionProfiles

Similar Articles

Cited By

No available data.