Digital phenotyping of negative symptoms: the relationship to clinician ratings.

Alex S Cohen, Elana Schwartz, Thanh P Le, Tovah Cowan, Brian Kirkpatrick, Ian M Raugh, Gregory P Strauss
Author Information
  1. Alex S Cohen: Department of Psychology, Louisiana State University, Baton Rouge, LA.
  2. Elana Schwartz: Department of Psychology, Louisiana State University, Baton Rouge, LA.
  3. Thanh P Le: Department of Psychology, Louisiana State University, Baton Rouge, LA.
  4. Tovah Cowan: Department of Psychology, Louisiana State University, Baton Rouge, LA.
  5. Brian Kirkpatrick: Department of Psychiatry and Behavioral Sciences, University of Nevada, Reno School of Medicine, Reno, NV.
  6. Ian M Raugh: Department of Psychology, University of Georgia, Athens, GA.
  7. Gregory P Strauss: Department of Psychology, University of Georgia, Athens, GA.

Abstract

Negative symptoms are a critical, but poorly understood, aspect of schizophrenia. Measurement of negative symptoms primarily relies on clinician ratings, an endeavor with established reliability and validity. There have been increasing attempts to digitally phenotype negative symptoms using objective biobehavioral technologies, eg, using computerized analysis of vocal, speech, facial, hand and other behaviors. Surprisingly, biobehavioral technologies and clinician ratings are only modestly inter-related, and findings from individual studies often do not replicate or are counterintuitive. In this article, we document and evaluate this lack of convergence in 4 case studies, in an archival dataset of 877 audio/video samples, and in the extant literature. We then explain this divergence in terms of "resolution"-a critical psychometric property in biomedical, engineering, and computational sciences defined as precision in distinguishing various aspects of a signal. We demonstrate how convergence between clinical ratings and biobehavioral data can be achieved by scaling data across various resolutions. Clinical ratings reflect an indispensable tool that integrates considerable information into actionable, yet "low resolution" ordinal ratings. This allows viewing of the "forest" of negative symptoms. Unfortunately, their resolution cannot be scaled or decomposed with sufficient precision to isolate the time, setting, and nature of negative symptoms for many purposes (ie, to see the "trees"). Biobehavioral measures afford precision for understanding when, where, and why negative symptoms emerge, though much work is needed to validate them. Digital phenotyping of negative symptoms can provide unprecedented opportunities for tracking, understanding, and treating them, but requires consideration of resolution.

Keywords

References

  1. Schizophr Bull. 2010 Jul;36(4):788-99 [PMID: 19095758]
  2. JAMA Psychiatry. 2015 Dec;72(12):1161-2 [PMID: 26558844]
  3. Schizophr Bull. 2006 Apr;32(2):214-9 [PMID: 16481659]
  4. Am J Psychiatry. 2013 Feb;170(2):165-72 [PMID: 23377637]
  5. Behav Res Methods. 2009 Feb;41(1):204-212 [PMID: 19182141]
  6. Schizophr Res. 2016 Jan;170(1):198-204 [PMID: 26701649]
  7. Am J Psychiatry. 1994 Oct;151(10):1453-62 [PMID: 7916540]
  8. Schizophr Res. 2010 Aug;121(1-3):90-100 [PMID: 20434313]
  9. JAMA Psychiatry. 2018 Dec 1;75(12):1271-1279 [PMID: 30208377]
  10. Psychiatry Res. 1989 Nov;30(2):119-23 [PMID: 2616682]
  11. Schizophr Bull. 2006 Apr;32(2):238-45 [PMID: 16254064]
  12. Int J Psychophysiol. 2015 Nov;98(2 Pt 2):330-337 [PMID: 25578646]
  13. Schizophr Bull. 2019 Mar 7;45(2):305-314 [PMID: 29912473]
  14. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  15. J Abnorm Psychol. 2012 Feb;121(1):109-18 [PMID: 21553936]
  16. Schizophr Bull. 2015 Jul;41(4):892-9 [PMID: 25528757]
  17. World Psychiatry. 2008 Oct;7(3):143-7 [PMID: 18836581]
  18. Behav Res Methods. 2016 Jun;48(2):475-86 [PMID: 25862539]
  19. Schizophr Bull. 2017 Jul 1;43(4):730-736 [PMID: 28575513]
  20. Arch Gen Psychiatry. 1982 Jul;39(7):784-8 [PMID: 7165477]
  21. Clin Psychol Rev. 2018 Apr;61:24-37 [PMID: 29751942]
  22. World Psychiatry. 2017 Feb;16(1):14-24 [PMID: 28127915]
  23. Schizophr Res. 2012 Dec;142(1-3):96-8 [PMID: 23062750]
  24. Schizophr Res. 2012 Sep;140(1-3):41-5 [PMID: 22831770]
  25. Psychiatry Res. 2009 Oct 30;169(3):197-202 [PMID: 19762087]
  26. Psychol Med. 2002 Apr;32(3):439-49 [PMID: 11989989]
  27. Schizophr Bull. 2011 Mar;37(2):300-5 [PMID: 20558531]
  28. J Abnorm Psychol. 2016 Feb;125(2):299-309 [PMID: 26854511]
  29. Schizophr Bull. 2008 Sep;34(5):835-47 [PMID: 18591195]
  30. Schizophr Bull. 2015 Sep;41(5):1045-54 [PMID: 26142081]
  31. J Abnorm Psychol. 2019 May;128(4):341-351 [PMID: 30869926]
  32. World Psychiatry. 2019 Feb;18(1):103-104 [PMID: 30600611]
  33. Schizophr Bull. 2008 Sep;34(5):819-34 [PMID: 18579556]
  34. Schizophr Res. 2004 May 1;68(1):37-48 [PMID: 15037338]
  35. Schizophr Res. 2013 Nov;150(2-3):343-5 [PMID: 23899996]
  36. J Psychiatr Res. 2008 Aug;42(10):827-36 [PMID: 17920078]
  37. Schizophr Bull. 2017 Jul 1;43(4):712-719 [PMID: 28969356]
  38. Am J Psychiatry. 2014 Apr;171(4):395-7 [PMID: 24687194]
  39. Schizophr Bull. 2010 Jan;36(1):143-50 [PMID: 18562345]
  40. Psychol Med. 2015 Jun;45(8):1613-27 [PMID: 25425086]
  41. Schizophr Bull. 2011 Mar;37(2):291-9 [PMID: 20861151]
  42. Schizophr Res. 2014 Nov;159(2-3):533-8 [PMID: 25261880]
  43. World Psychiatry. 2020 Feb;19(1):114-115 [PMID: 31922662]
  44. Schizophr Res. 2013 May;146(1-3):249-53 [PMID: 23481582]
  45. Psychol Assess. 2019 Mar;31(3):277-284 [PMID: 30802113]
  46. Schizophr Res. 2014 Dec;160(1-3):173-9 [PMID: 25464920]
  47. Behav Brain Funct. 2009 Jan 23;5:6 [PMID: 19166576]

Grants

  1. R03 MH092622/NIMH NIH HHS

MeSH Term

Behavior Rating Scale
Female
Humans
Interview, Psychological
Male
Middle Aged
Phenotype
Psychiatric Status Rating Scales
Psychometrics
Schizophrenia

Word Cloud

Created with Highcharts 10.0.0negativesymptomsratingsbiobehavioralclinicianprecisionphenotypingcriticalschizophreniausingtechnologiesstudiesconvergencecomputationalvariousdatacanresolutionunderstandingDigitalNegativepoorlyunderstoodaspectMeasurementprimarilyreliesendeavorestablishedreliabilityvalidityincreasingattemptsdigitallyphenotypeobjectiveegcomputerizedanalysisvocalspeechfacialhandbehaviorsSurprisinglymodestlyinter-relatedfindingsindividualoftenreplicatecounterintuitivearticledocumentevaluatelack4casearchivaldataset877audio/videosamplesextantliteratureexplaindivergenceterms"resolution"-apsychometricpropertybiomedicalengineeringsciencesdefineddistinguishingaspectssignaldemonstrateclinicalachievedscalingacrossresolutionsClinicalreflectindispensabletoolintegratesconsiderableinformationactionableyet"lowresolution"ordinalallowsviewing"forest"Unfortunatelyscaleddecomposedsufficientisolatetimesettingnaturemanypurposesiesee"trees"Biobehavioralmeasuresaffordemergethoughmuchworkneededvalidateprovideunprecedentedopportunitiestrackingtreatingrequiresconsiderationsymptoms:relationshipdeficitdigitalpsychiatry

Similar Articles

Cited By