Metabolomic Reprogramming Detected by H-NMR Spectroscopy in Human Thyroid Cancer Tissues.

Alessio Metere, Claire E Graves, Mattea Chirico, Maria José Caramujo, Maria Elena Pisanu, Egidio Iorio
Author Information
  1. Alessio Metere: Surgical Sciences Department, "Sapienza" University of Rome, Viale Regina Elena 261, 00161, Roma, Italy.
  2. Claire E Graves: Department of Surgery, University of California, San Francisco, 1600 Divisadero St. 4th Floor, San Francisco, CA 94115, USA.
  3. Mattea Chirico: NMR Unit, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
  4. Maria José Caramujo: Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
  5. Maria Elena Pisanu: NMR Unit, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.
  6. Egidio Iorio: NMR Unit, Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy.

Abstract

Thyroid cancer cells demonstrate an increase in oxidative stress and decreased antioxidant action, but the effects of this increased oxidative stress on cell function remain unknown. We aimed to identify changes in the metabolism of thyroid cancer cells caused by oxidative stress, using proton nuclear magnetic resonance (H-NMR) spectroscopy. Samples of thyroid cancer and healthy thyroid tissue were collected from patients undergoing thyroidectomy and analyzed with H-NMR spectroscopy for a wide array of metabolites. We found a significant increase in lactate content in thyroid cancer tissue compared to healthy tissue. Metabolomic analysis demonstrated significant differences between cancer tissue and healthy tissue, including an increase in aromatic amino acids, and an average decrease in citrate in thyroid cancer tissue. We hypothesize that these changes in metabolism may be due to an oxidative stress-related decrease in activity of the Krebs cycle, and a shift towards glycolysis in cancer tissue. Thus, thyroid cancer cells are able to reprogram their metabolic activity to survive in conditions of high oxidative stress and with a compromised antioxidant system. Our findings, for the first time, suggested a connection between oxidative stress and the alteration of the metabolic profile in thyroid tumors.

Keywords

References

  1. Pharmacol Ther. 2020 Feb;206:107451 [PMID: 31836453]
  2. Biomolecules. 2019 Nov 13;9(11): [PMID: 31766246]
  3. Metabolomics. 2018 Oct 10;14(10):141 [PMID: 30830426]
  4. Molecules. 2017 Jan 21;22(1): [PMID: 28117726]
  5. Aging Cell. 2012 Jun;11(3):520-9 [PMID: 22404840]
  6. Gen Physiol Biophys. 2015 Jul;34(3):221-33 [PMID: 25926547]
  7. Eur Rev Med Pharmacol Sci. 2012 May;16(5):646-52 [PMID: 22774406]
  8. Int J Mol Sci. 2019 Sep 10;20(18): [PMID: 31510091]
  9. Sci Rep. 2015 Oct 21;5:14869 [PMID: 26486570]
  10. Free Radic Res. 2018 Mar;52(3):305-306 [PMID: 29669487]
  11. Genes Dis. 2017 Feb 14;4(1):25-27 [PMID: 30258905]
  12. J Clin Neurosci. 2019 Oct;68:275-280 [PMID: 31409545]
  13. Surgery. 2010 Jun;147(6):847-53 [PMID: 20045163]
  14. Head Neck. 2010 Jun;32(6):750-6 [PMID: 19998441]
  15. J Endocrinol Invest. 2014 Jun;37(6):593-9 [PMID: 24789536]
  16. Int J Mol Med. 2018 May;41(5):3006-3014 [PMID: 29484373]
  17. Cancer Manag Res. 2019 Feb 25;11:1829-1841 [PMID: 30881111]
  18. Cancer Cell Int. 2018 Jan 15;18:7 [PMID: 29371830]
  19. Anticancer Res. 2017 Sep;37(9):4759-4766 [PMID: 28870894]
  20. Antioxid Redox Signal. 2011 Oct 1;15(7):1957-97 [PMID: 21087145]
  21. Sci Rep. 2014 Aug 05;4:5959 [PMID: 25091112]
  22. Thyroid. 2009 Nov;19(11):1167-214 [PMID: 19860577]
  23. Acta Neurol Scand. 2011 Nov;124(5):295-301 [PMID: 21303349]
  24. Metab Brain Dis. 2017 Apr;32(2):557-564 [PMID: 27924409]
  25. Arch Surg. 2011 Feb;146(2):179-82 [PMID: 21339429]
  26. J Proteome Res. 2012 Jun 1;11(6):3317-25 [PMID: 22509853]
  27. Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494 [PMID: 29762782]
  28. Cancer Res. 2005 Oct 15;65(20):9369-76 [PMID: 16230400]
  29. PLoS One. 2013 Apr 16;8(4):e61204 [PMID: 23613812]
  30. Sci Rep. 2016 Jul 21;6:30075 [PMID: 27440433]
  31. Cell Death Dis. 2019 Sep 10;10(9):653 [PMID: 31506428]
  32. Sci Rep. 2019 Mar 18;9(1):4786 [PMID: 30886205]
  33. Cell Syst. 2019 Feb 27;8(2):163-167.e2 [PMID: 30797774]
  34. Recent Pat Inflamm Allergy Drug Discov. 2009 Jan;3(1):73-80 [PMID: 19149749]
  35. Eur Rev Med Pharmacol Sci. 2014 Oct;18(20):3091-6 [PMID: 25392110]
  36. PLoS One. 2013 Dec 23;8(12):e84637 [PMID: 24376829]
  37. Anal Bioanal Chem. 2014 Jul;406(18):4357-70 [PMID: 24842401]
  38. FEBS J. 2019 Apr;286(7):1420-1436 [PMID: 30768848]
  39. Curr Protoc Bioinformatics. 2019 Dec;68(1):e86 [PMID: 31756036]

Word Cloud

Created with Highcharts 10.0.0cancerthyroidoxidativetissuestresscellsincreaseH-NMRhealthyThyroidantioxidantchangesmetabolismspectroscopysignificantMetabolomicdecreaseactivitymetabolicdemonstratedecreasedactioneffectsincreasedcellfunctionremainunknownaimedidentifycausedusingprotonnuclearmagneticresonanceSamplescollectedpatientsundergoingthyroidectomyanalyzedwidearraymetabolitesfoundlactatecontentcomparedanalysisdemonstrateddifferencesincludingaromaticaminoacidsaveragecitratehypothesizemayduestress-relatedKrebscycleshifttowardsglycolysisThusablereprogramsurviveconditionshighcompromisedsystemfindingsfirsttimesuggestedconnectionalterationprofiletumorsReprogrammingDetectedSpectroscopyHumanCancerTissuesNMRmetabolomicanalyses

Similar Articles

Cited By