Anguillid eels as a surrogate species for conservation of freshwater biodiversity in Japan.

Hikaru Itakura, Ryoshiro Wakiya, Matthew Gollock, Kenzo Kaifu
Author Information
  1. Hikaru Itakura: Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, 146 Williams St., Solomons, MD, 20688, USA. itakurahikaru@gmail.com.
  2. Ryoshiro Wakiya: Research and Development Initiative, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
  3. Matthew Gollock: The Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
  4. Kenzo Kaifu: Faculty of Law, Chuo University, 724-1 Higashinakano, Hachioji-shi, Tokyo, 192-0393, Japan.

Abstract

To monitor and manage biodiversity, surrogate species (i.e., indicator, umbrella and flagship species) have been proposed where conservation resources are focused on a limited number of focal organisms. Using data obtained from 78 sites across six rivers in the mainland Japan and the Amami-Oshima Island, we demonstrate that two anguillids - the Japanese eel (Anguilla japonica) and the giant mottled eel (A. marmorata) - can act as surrogate species for conservation of freshwater biodiversity. Anguillid eels were the widest topographically-distributed species ranging from near the mouth to the upper reaches of rivers. Moreover, stable isotopic analyses indicated that eels are likely one of the highest-order predators in freshwater ecosystems. A significant positive relationship was found between the density of eels and the number of other diadromous species collected. However, the optimal models revealed that both the density of eels and the number of other diadromous species were significantly negatively correlated with distance from the river mouth and cumulative height of trans-river structures from the river mouth to each site. This suggests the positive relationship between eel density and number of other diadromous species was indirect and related to river-ocean connectivity. Given their catadromous life-cycle, and global commercial and cultural importance, as a taxa, anguillid eels can act as indicator, umbrella and flagship species, and a comprehensive surrogate for conservation of freshwater biodiversity.

References

  1. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004). [DOI: 10.1016/j.jhydrol.2004.03.028]
  2. Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010). [DOI: 10.1899/08-171.1]
  3. Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L. J. & Gill, A. C. So Many Fishes, So Little Time: An Overview of Recent Ichthyological Discovery in Continental Waters. Ann. Missouri Bot. Gard. 87, 26–62 (2000). [DOI: 10.2307/2666207]
  4. Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The Freshwater Animal Diversity Assessment: An overview of the results. Hydrobiologia 595, 627–637 (2008). [DOI: 10.1007/s10750-007-9246-3]
  5. Sala, O. E. et al. Global Biodiversity Scenarios for the Year 2100. Science 287, 1770–1775 (2000). [PMID: 10710299]
  6. Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006). [PMID: 16336747]
  7. Butchart, H. M. S. et al. Global Biodiversity: Indicators of Recent Declines. Science 328, 1164–1168 (2010). [PMID: 20430971]
  8. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019). [PMID: 30467930]
  9. Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014). [PMID: 26430385]
  10. Simberloff, D. Flagships, Umbrellas, and Keystones: is Single-Species Management Passé in The Landscape Era? Biol. Conserv. 83, 247–257 (1998). [DOI: 10.1016/S0006-3207(97)00081-5]
  11. Caro, T. M. & O’Doherty, G. On the Use of Surrogate Species in Conservation Biology. Conserv. Biol. 13, 805–814 (1999). [DOI: 10.1046/j.1523-1739.1999.98338.x]
  12. Landres, P. B., Verner, J. & Thomas, J. W. Ecological uses of vertebrate indicator species: a critique. Conserv. Biol. 2, 316–327 (1988). [DOI: 10.1111/j.1523-1739.1988.tb00195.x]
  13. Wilcox, B. In situ conservation of genetic resources: determinants of minimum area requirements. In National Parks: Conservation and Development, Proceedings of the World Congress on National Parks (eds. McNeely, J. & Miller, K.) 639–647, https://doi.org/10.13140/2.1.4879.2322 (1984).
  14. Western, D. Africa’s elephants and rhinos: Flagships in crisis. Trends Ecol. Evol. 2, 343–346 (1987). [PMID: 21227879]
  15. Zacharias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: a review and critique. Aquat. Conserv. Mar. Freshw. Ecosyst. 11, 59–76 (2001). [DOI: 10.1002/aqc.429]
  16. Branton, M. & Richardson, J. S. Assessing the Value of the Umbrella-Species Concept for Conservation Planning with Meta-Analysis. Conserv. Biol. 25, 9–20 (2010). [PMID: 21091767]
  17. Noss, R. F., Quigley, H. B., Hornocker, M. G., Merrill, T. & Paquet, P. C. Conservation Biology and Carnivore Conservation in the Rocky Mountains. Conserv. Biol. 10, 949–963 (1996). [DOI: 10.1046/j.1523-1739.1996.10040949.x]
  18. Roberge, J. & Angelstam, P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conserv. Biol. 18, 76–85 (2004). [DOI: 10.1111/j.1523-1739.2004.00450.x]
  19. Hitt, N. P. & Frissell, C. A. A case study of surrogate species in aquatic conservation planning. Aquat. Conserv. Mar. Freshw. Ecosyst. 625–633, https://doi.org/10.1002/aqc.638 (2004). [DOI: 10.1002/aqc.638]
  20. Bifolchi, A. & Lode, T. Efficiency of conservation shortcuts: An investigation with otters as umbrella species. Biol. Conserv. 126, 523–527 (2005). [DOI: 10.1016/j.biocon.2005.07.002]
  21. Shokri, M. R., Gladstone, W. & Jelbart, J. The effectiveness of seahorses and pipefish (Pisces: Syngnathidae) as a flagship group to evaluate the conservation value of estuarine seagrass beds. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 588–595 (2009). [DOI: 10.1002/aqc.1009]
  22. Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes? Proc. Natl. Acad. Sci. USA 97, 5954–5959 (2000). [PMID: 10811901]
  23. Lawler, J. J. & White, D. Assessing the mechanisms behind successful surrogates for biodiversity in conservation planning. Anim. Conserv. 11, 270–280 (2008). [DOI: 10.1111/j.1469-1795.2008.00176.x]
  24. IUCN. Promotion of Anguillid eels as flagship species for aquatic conservation. in IUCN World Conservation Congress 2020 (IUCN, 2016).
  25. IUCN. The IUCN Red List of Threatened Species. Version 2019.2. (2019).
  26. Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015). [DOI: 10.1016/j.gecco.2015.07.009]
  27. Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish. 1–28, https://doi.org/10.1111/faf.12300 (2018). [DOI: 10.1111/faf.12300]
  28. Moriarty, C. The yellow eel. in Eel biology (eds. Aida, K., Tsukamoto, K. & Yamauchi, K.) 89–105 (Springer, 2003).
  29. Itakura, H., Kaino, T., Miyake, Y., Kitagawa, T. & Kimura, S. Feeding, condition, and abundance of Japanese eels from natural and revetment habitats in the Tone River, Japan. Environ. Biol. Fishes 98, 1871–1888 (2015). [DOI: 10.1007/s10641-015-0404-6]
  30. Kaifu, K., Miyazaki, S., Aoyama, J., Kimura, S. & Tsukamoto, K. Diet of Japanese eels Anguilla japonica in the Kojima Bay-Asahi River system, Japan. Environ. Biol. Fishes 96, 439–446 (2013). [DOI: 10.1007/s10641-012-0027-0]
  31. Dörner, H. et al. Piscivory and trophic position of Anguilla anguilla in two lakes: Importance of macrozoobenthos density. J. Fish Biol. 74, 2115–2131 (2009). [PMID: 20735691]
  32. Jellyman, D. J. Diet of two species of freshwater eel (Anguilla spp.) in Lake Pounui, New Zealand. New Zeal. J. Mar. Freshw. Res. 23, 1–10 (1989). [DOI: 10.1080/00288330.1989.9516334]
  33. Denoncourt, C. E. & Stauffer, J. R. J. Feeding selectivity of the American eel Anguilla rostrata (LeSueur) in the Upper Delaware River. Am. Midl. Nat. 129, 301–308 (1993). [DOI: 10.2307/2426511]
  34. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). [DOI: 10.1029/2003RG000127]
  35. Seely, D. R., Vali, P. R. & Walton, G. G. Trench Slope Model. in The Geology of Continental Margins (eds. Burk, C. A. & Drake, C. L.) 249–260 (Springer-Verlag, 1974).
  36. Darlington, P. J. Zoogeography: the Geographical Distribution of Animals. (John Wiley & Sons, Ltd, 1957).
  37. Limburg, K. E. & Waldman, J. R. Dramatic Declines in North Atlantic Diadromous Fishes. Bioscience 59, 955–965 (2009). [DOI: 10.1525/bio.2009.59.11.7]
  38. Tsukamoto, K. et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat. Commun. 2, 179 (2011). [PMID: 21285957]
  39. Itakura, H. et al. Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river‐basin scale. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 361–373 (2019). [DOI: 10.1002/aqc.3058]
  40. Kaifu, K., Tamura, M., Aoyama, J. & Tsukamoto, K. Dispersal of yellow phase Japanese eels Anguilla japonica after recruitment in the Kojima Bay-Asahi river system, Japan. Environ. Biol. Fishes 88, 273–282 (2010). [DOI: 10.1007/s10641-010-9640-y]
  41. Jacoby, D. M. P. & Gollock, M. J. Anguilla japonica. IUCN Red List Threat. Species 2014e.T166184A1117791. (2014).
  42. Ege, V. A revision of the genus Anguilla Shaw: a systematic, phylogenetic and geographical study. Dana Rep. 16, 1–256 (1939).
  43. Watanabe, S., Aoyama, J. & Tsukamoto, K. Reexamination of Eges (1939) Use of Taxonomic Characters of the Genus Anguilla. Bull. Mar. Sci. 74, 337–351 (2004).
  44. Minegishi, Y., Aoyama, J. & Tsukamoto, K. Multiple population structure of the giant mottled eel, Anguilla marmorata. Mol. Ecol. 17, 3109–3122 (2008). [PMID: 18522690]
  45. Shiao, J. C., Iizuka, Y., Chang, C. W. & Tzeng, W. N. Disparities in habitat use and migratory behavior between tropical eel Anguilla marmorata and temperate eel A. japonica in four Taiwanese rivers. Mar. Ecol. Prog. Ser. 261, 233–242 (2003). [DOI: 10.3354/meps261233]
  46. Hagihara, S., Aoyama, J., Limbong, D. & Tsukamoto, K. Interspecific and sexual differences in riverine distribution of tropical eels Anguilla spp. J. Fish Biol. 93, 21–29 (2018). [PMID: 29938811]
  47. Wakiya, R., Itakura, H. & Kaifu, K. Age, growth, and sex ratios of the giant mottled eel, Anguilla marmorata, in freshwater habitats near its northern geographic limit: a comparison to tropical regions. Zool. Stud. 58, 34 (2019).
  48. Jacoby, D. & Gollock, M. J. Anguilla marmorata. IUCN Red List Threat. Species 2014e.T166189A45832585. (2014).
  49. Guelinckx, J. et al. Changes in δC and δN in different tissues of juvenile sand goby Pomatoschistus minutus: A laboratory diet-switch experiment. Mar. Ecol. Prog. Ser. 341, 205–215 (2007). [DOI: 10.3354/meps341205]
  50. Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984). [DOI: 10.1016/0016-7037(84)90204-7]
  51. Dôtu, Y. & Mito, S. Life history of a Gobioid fish, Sicydium japonzcum TANAKA. Sci. Bull. Fac. Agric. Kyushu Univ. 15, 213–221 (1955).
  52. Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. Available at: https://cran.r-project.org/package=lme4 . (Accessed: 27th September 2019) (2019).
  53. Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach, second edition, https://doi.org/10.1016/j.ecolmodel.2003.11.004 (Springer, 2002).
  54. Bartoń, K. MuMIn: Multi-Model Inference. (2019).
  55. Hothorn, T. & Hornik, K. exactRankTests: Exact Distributions for Rank and Permutation Tests, Available at: https://cran.r-project.org/package=exactRankTests (2019).
  56. Torchiano, M. effsize: Efficient Effect Size Computation. Available at: https://cran.r-project.org/package=effsize (2019).
  57. Romano, J., Kromrey, J. D., Coraggio, J. & Skowronek, J. Appropriate statistics for ordinal level data: Should we really be using t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys. Annu. Meet. Florida Assoc. Institutional Res. (2006).
  58. Mcdowall, R. M. Fighting the flow: Downstream-upstream linkages in the ecology of diadromous fish faunas in West Coast New Zealand rivers. Freshw. Biol. 40, 111–122 (1998). [DOI: 10.1046/j.1365-2427.1998.00336.x]
  59. Abe, S. I., Yodo, T., Matsubara, N. & Iguchi, K. Distribution of two sympatric amphidromous grazing fish Plecoglossus altivelis Temminck & Schlegel and Sicyopterus japonicus (Tanaka) along the course of a temperate river. Hydrobiologia 575, 415–422 (2007). [DOI: 10.1007/s10750-006-0389-4]
  60. Saito, M., Yamashiro, T., Hamano, T. & Nakata, K. Factors affecting distribution of freshwater shrimps and prawns in the Hiwasa River, southern central Japan. Crustac. Res. 41, 27–46 (2012). [DOI: 10.18353/crustacea.41.0_27]
  61. Iida, M., Watanabe, S. & Tsukamoto, K. Riverine life history of the amphidromous goby Sicyopterus japonicus (Gobiidae: Sicydiinae) in the Ota River, Wakayama, Japan. Environ. Biol. Fishes 96, 645–660 (2013). [DOI: 10.1007/s10641-012-0055-9]
  62. Yokouchi, K., Aoyama, J., Oka, H. P. & Tsukamoto, K. Variation in the demographic characteristics of yellow-phase Japanese eels in different habitats of the Hamana Lake system, Japan. Ecol. Freshw. Fish 17, 639–652 (2008). [DOI: 10.1111/j.1600-0633.2008.00315.x]
  63. Aprahamian, M. W., Walker, A. M., Williams, B., Bark, A. & Knights, B. On the application of models of European eel (Anguilla anguilla) production and escapement to the development of Eel Management Plans: The River Severn. ICES J. Mar. Sci. 64, 1472–1482 (2007). [DOI: 10.1093/icesjms/fsm131]
  64. Smogor, R. A., Angermeier, P. L. & Gaylord, C. K. Distribution and Abundance of American Eels in Virginia Streams: Tests of Null Models across Spatial Scales. Trans. Am. Fish. Soc. 124, 789–803 (2017). [DOI: 10.1577/1548-8659(1995)124<0789]
  65. Glova, G. J., Jellyman, D. J. & Bonnett, M. L. Factors associated with the distribution and habitat of eels (Anguilla spp.) in three New Zealand lowland streams. New Zeal. J. Mar. Freshw. Res. 32, 255–269 (1998). [DOI: 10.1080/00288330.1998.9516824]
  66. Robinet, T. et al. Eel community structure, fluvial recruitment of Anguilla marmorata and indication for a weak local production of spawners from rivers of Réunion and Mauritius islands. Environ. Biol. Fishes 78, 93–105 (2007). [DOI: 10.1007/s10641-006-9042-3]
  67. Laffaille, P., Acou, A., Legault, A. & Guilloue, J. Temporal changes in European eel, Anguilla anguilla, stocks in a small catchment after installation of fish passes. Fish. Manag. 12, 123–129 (2005).
  68. Machut, L. S., Limburg, K. E., Schmidt, R. E. & Dit-Rman, D. Anthropogenic impacts on American eel demographics in Hudson River tributaries, New York. Trans. Am. Fish. Soc. 136, 1699–1713 (2007). [DOI: 10.1577/T06-140.1]
  69. Hall, C. J., Jordaan, A. & Frisk, M. G. The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landsc. Ecol. 26, 95–107 (2011). [DOI: 10.1007/s10980-010-9539-1]
  70. Hitt, N. P., Eyler, S. & Wofford, J. E. B. Dam Removal Increases American Eel Abundance in Distant Headwater Streams. Trans. Am. Fish. Soc. Am. Fish. Soc. 141, 1171–1179 (2012). [DOI: 10.1080/00028487.2012.675918]
  71. Chen, J. Z., Huang, S. L. & Han, Y. S. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar. Coast. Shelf Sci. 151, 361–369 (2014). [DOI: 10.1016/j.ecss.2014.06.004]
  72. Clavero, M. & Hermoso, V. Historical data to plan the recovery of the European eel. J. Appl. Ecol. 52, 960–968 (2015). [DOI: 10.1111/1365-2664.12446]
  73. Kuroki, M., Righton, D. & Walker, A. M. The importance of Anguillids: A cultural and historical perspective introducing papers from the World Fisheries Congress. Ecol. Freshw. Fish 23, 2–6 (2014). [DOI: 10.1111/eff.12089]
  74. Kuroki, M. & Tsukamoto, K. Eels on the move-Mysterious creatures over millions of years. (Tokai University Press, 2012).
  75. Shiraishi, H. & Crook, V. Eel market dynamics: An analysis of Anguilla production, trade and consumption in East Asia. TRAFFIC (2015).
  76. Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019). [PMID: 31672894]
  77. Ministry of Environment. Report of consultation business for conservation policy of the Japanese eel. (2016).
  78. Rahel, F. J. & McLaughlin, R. L. Selective fragmentation and the management of fish movement across anthropogenic barriers. Ecol. Appl. 28, 2066–2081 (2018). [PMID: 30168645]
  79. Feunteun, E. Management and restoration of European eel population (Anguilla anguilla): An impossible bargain. Ecol. Eng. 18, 575–591 (2002). [DOI: 10.1016/S0925-8574(02)00021-6]
  80. Secor, D. H. American Eel: When Does Diversity Matter? Fisheries 40, 642–643 (2015). [DOI: 10.1080/03632415.2015.1073152]
  81. Verreault, G., Dumont, P. & Mailhot, Y. Habitat losses and anthropogenic barriers as a cause of population decline for American eel (Anguilla rostrata) in the St. Lawrence watershed, Canada. ICES C. (2004).
  82. Busch, W. D. N., Lary, S. J., Castiglione, C. M. & McDonald, R. Distribution and Availability of Atlantic Coast Freshwater Habitats for American Eel (Anguilla rostrata). Adm. Rep. 982, Lower Great Lakes Fishery Resources Office, U (1998).

MeSH Term

Anguilla
Animal Migration
Animals
Biodiversity
Conservation of Natural Resources
Fresh Water
Japan

Word Cloud

Created with Highcharts 10.0.0specieseelsbiodiversitysurrogateconservationnumberfreshwatereelmouthdensitydiadromousindicatorumbrellaflagshipriversJapan-canactAnguillidpositiverelationshiprivermonitormanageieproposedresourcesfocusedlimitedfocalorganismsUsingdataobtained78sitesacrosssixmainlandAmami-OshimaIslanddemonstratetwoanguillidsJapaneseAnguillajaponicagiantmottledmarmoratawidesttopographically-distributedrangingnearupperreachesMoreoverstableisotopicanalysesindicatedlikelyonehighest-orderpredatorsecosystemssignificantfoundcollectedHoweveroptimalmodelsrevealedsignificantlynegativelycorrelateddistancecumulativeheighttrans-riverstructuressitesuggestsindirectrelatedriver-oceanconnectivityGivencatadromouslife-cycleglobalcommercialculturalimportancetaxaanguillidcomprehensive

Similar Articles

Cited By