Ethanol and Cannabinoids Regulate Zebrafish GABAergic Neuron Development and Behavior in a Sonic Hedgehog and Fibroblast Growth Factor-Dependent Mechanism.

Oswald Boa-Amponsem, Chengjin Zhang, Derek Burton, Kevin P Williams, Gregory J Cole
Author Information
  1. Oswald Boa-Amponsem: From the, Integrated Biosciences Program, (OB-A), North Carolina Central University, Durham, North Carolina.
  2. Chengjin Zhang: Julius L. Chambers Biomedical/Biotechnology Research Institute, (OB-A, C-Z, GJC), North Carolina Central University, Durham, North Carolina.
  3. Derek Burton: Biomanufacturing Research Institute and Technology Enterprise, (DB, KPW), North Carolina Central University, Durham, North Carolina.
  4. Kevin P Williams: Biomanufacturing Research Institute and Technology Enterprise, (DB, KPW), North Carolina Central University, Durham, North Carolina.
  5. Gregory J Cole: Julius L. Chambers Biomedical/Biotechnology Research Institute, (OB-A, C-Z, GJC), North Carolina Central University, Durham, North Carolina. ORCID

Abstract

BACKGROUND: Ethanol (EtOH) has diverse effects on nervous system development, which includes development and survival of GABAergic neurons in a sonic hedgehog (Shh) and fibroblast growth factor (Fgf)-dependent mechanism. Cannabinoids also function as inhibitors of Shh signaling, raising the possibility that EtOH and cannabinoids may interact to broadly disrupt neuronal function during brain development.
METHODS: Zebrafish embryos were exposed to a range of EtOH and/or cannabinoid receptor 1 (CB1R) agonist concentrations at specific developmental stages, in the absence or presence of morpholino oligonucleotides that disrupt shh expression. In situ hybridization was employed to analyze glutamic acid decarboxylase (gad1) gene expression as a marker of GABAergic neuron differentiation, and zebrafish behavior was analyzed using the novel tank diving test as a measure of risk-taking behavior.
RESULTS: Combined acute subthreshold EtOH and CB1R agonist exposure results in a marked reduction in gad1 mRNA expression in zebrafish forebrain. Consistent with the EtOH and cannabinoid effects on Shh signaling, fgf8 mRNA overexpression rescues the EtOH- and cannabinoid-induced decrease in gad1 gene expression and also prevents the changes in behavior induced by EtOH and cannabinoids.
CONCLUSIONS: These studies provide evidence that forebrain GABAergic neuron development and zebrafish risk-taking behavior are sensitive to both EtOH and cannabinoid exposure in a Shh- and Fgf-dependent mechanism, and provide additional evidence that a signaling pathway involving Shh and Fgf crosstalk is a critical target of EtOH and cannabinoids in FASD.

Keywords

References

  1. PLoS Genet. 2012;8(10):e1002999 [PMID: 23071453]
  2. Vis Neurosci. 2007 May-Jun;24(3):409-21 [PMID: 17640445]
  3. Alcohol Clin Exp Res. 2009 Jun;33(6):1001-11 [PMID: 19302087]
  4. Physiol Behav. 2007 Jan 30;90(1):54-8 [PMID: 17049956]
  5. Cell. 1995 Jan 13;80(1):95-101 [PMID: 7813022]
  6. J Neurosci. 2003 Oct 29;23(30):9862-72 [PMID: 14586015]
  7. J Pediatr. 1978 Jan;92(1):64-7 [PMID: 619080]
  8. Birth Defects Res. 2019 Jul 15;111(12):775-788 [PMID: 30648819]
  9. Neurotoxicol Teratol. 2004 Nov-Dec;26(6):769-81 [PMID: 15451041]
  10. J Anat. 1997 Jul;191 ( Pt 1):49-56 [PMID: 9279658]
  11. Brain Res. 1985 Jan 28;325(1-2):151-60 [PMID: 4038892]
  12. Neuron. 1995 Jul;15(1):35-44 [PMID: 7619528]
  13. Pediatrics. 2014 Nov;134(5):855-66 [PMID: 25349310]
  14. J Neurosci Res. 2006 Aug 15;84(3):483-96 [PMID: 16770775]
  15. Alcohol Clin Exp Res. 1997 Nov;21(8):1418-28 [PMID: 9394113]
  16. PLoS One. 2014 Feb 19;9(2):e89448 [PMID: 24586787]
  17. Dev Neurobiol. 2008 Jun;68(7):877-98 [PMID: 18327763]
  18. Cell. 1998 May 29;93(5):755-66 [PMID: 9630220]
  19. Ann Neurol. 2008 Jul;64(1):42-52 [PMID: 18067175]
  20. Science. 1981 Nov 20;214(4523):936-8 [PMID: 6795717]
  21. Alcohol Clin Exp Res. 1999 Apr;23(4):726-34 [PMID: 10235310]
  22. Birth Defects Res A Clin Mol Teratol. 2009 Jun;85(6):556-67 [PMID: 19235835]
  23. Birth Defects Res. 2017 Jul 3;109(11):860-865 [PMID: 28504423]
  24. Teratology. 1994 Aug;50(2):100-11 [PMID: 7801297]
  25. Birth Defects Res A Clin Mol Teratol. 2011 Mar;91(3):129-41 [PMID: 21308976]
  26. Neurotoxicol Teratol. 2016 Nov - Dec;58:15-22 [PMID: 26708672]
  27. Rev Neurosci. 2011;22(1):75-84 [PMID: 21615262]
  28. Birth Defects Res A Clin Mol Teratol. 2008 Apr;82(4):224-31 [PMID: 18338389]
  29. Alcohol Clin Exp Res. 2010 Jan;34(1):98-111 [PMID: 19860813]
  30. Sci Rep. 2019 Nov 5;9(1):16057 [PMID: 31690747]
  31. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3415-20 [PMID: 25733905]
  32. Alcohol. 1990 Mar-Apr;7(2):107-14 [PMID: 2328083]
  33. J Neurosci. 2013 Apr 10;33(15):6350-66 [PMID: 23575834]
  34. Behav Brain Res. 2016 Sep 15;311:70-80 [PMID: 27185739]
  35. Mol Cell Neurosci. 2008 May;38(1):89-97 [PMID: 18378465]
  36. Birth Defects Res A Clin Mol Teratol. 2013 Jan;97(1):8-27 [PMID: 23184466]
  37. JAMA. 2017 Dec 26;318(24):2490-2491 [PMID: 29279917]
  38. BMJ Open. 2016 Apr 05;6(4):e009986 [PMID: 27048634]
  39. Dis Model Mech. 2017 Jan 1;10(1):29-37 [PMID: 27935818]
  40. Lab Invest. 2007 Mar;87(3):231-40 [PMID: 17237799]
  41. Birth Defects Res A Clin Mol Teratol. 2007 Sep;79(9):642-51 [PMID: 17647295]
  42. Dev Biol. 2005 Dec 1;288(1):259-75 [PMID: 16256099]
  43. Neurotoxicol Teratol. 2016 Nov - Dec;58:1-4 [PMID: 27989694]
  44. J Comp Neurol. 2007 Jun 1;502(4):497-506 [PMID: 17394139]
  45. Pharmacol Biochem Behav. 2008 Mar;89(1):64-75 [PMID: 18096213]
  46. Glycobiology. 2007 Feb;17(2):231-47 [PMID: 17110391]
  47. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10476-81 [PMID: 12140368]
  48. PLoS One. 2011;6(5):e20037 [PMID: 21625530]
  49. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16273-8 [PMID: 12461181]
  50. J Neurosci. 2003 Jul 2;23(13):5507-19 [PMID: 12843251]
  51. Neurotoxicol Teratol. 2014 Jul-Aug;44:70-80 [PMID: 24929233]
  52. Int J Dev Neurosci. 1984;2(3):203-14 [PMID: 24874034]
  53. Neurotoxicol Teratol. 2015 Mar-Apr;48:1-8 [PMID: 25599606]
  54. Neurotoxicol Teratol. 2017 May;61:66-73 [PMID: 28223149]

Grants

  1. R21 AA025400/NIAAA NIH HHS
  2. U54 AA019765/NIAAA NIH HHS

MeSH Term

Animals
Behavior, Animal
Cannabinoid Receptor Agonists
Central Nervous System Depressants
Embryo, Nonmammalian
Ethanol
Fibroblast Growth Factors
GABAergic Neurons
Gene Expression
Glutamate Decarboxylase
Hedgehog Proteins
In Situ Hybridization
Morpholinos
Neurogenesis
Real-Time Polymerase Chain Reaction
Receptor, Cannabinoid, CB1
Risk-Taking
Zebrafish
Zebrafish Proteins

Chemicals

Cannabinoid Receptor Agonists
Central Nervous System Depressants
Hedgehog Proteins
Morpholinos
Receptor, Cannabinoid, CB1
Shha protein, zebrafish
Zebrafish Proteins
fgf8a protein, zebrafish
Ethanol
Fibroblast Growth Factors
Glutamate Decarboxylase
glutamate decarboxylase 1

Word Cloud

Created with Highcharts 10.0.0EtOHShhdevelopmentGABAergicexpressiongad1behaviorFgfsignalingcannabinoidscannabinoidzebrafishEthanoleffectsmechanismCannabinoidsalsofunctiondisruptZebrafishCB1Ragonistgeneneuronrisk-takingexposuremRNAforebrainprovideevidenceFASDBACKGROUND:diversenervoussystemincludessurvivalneuronssonichedgehogfibroblastgrowthfactor-dependentinhibitorsraisingpossibilitymayinteractbroadlyneuronalbrainMETHODS:embryosexposedrangeand/orreceptor1concentrationsspecificdevelopmentalstagesabsencepresencemorpholinooligonucleotidesshhsituhybridizationemployedanalyzeglutamicaciddecarboxylasemarkerdifferentiationanalyzedusingnoveltankdivingtestmeasureRESULTS:CombinedacutesubthresholdresultsmarkedreductionConsistentfgf8overexpressionrescuesEtOH-cannabinoid-induceddecreasepreventschangesinducedCONCLUSIONS:studiessensitiveShh-Fgf-dependentadditionalpathwayinvolvingcrosstalkcriticaltargetRegulateNeuronDevelopmentBehaviorSonicHedgehogFibroblastGrowthFactor-DependentMechanismCannabinoid

Similar Articles

Cited By