Integrative omics analysis of the termite gut system adaptation to Miscanthus diet identifies lignocellulose degradation enzymes.
Magdalena Calusinska, Martyna Marynowska, Marie Bertucci, Boris Untereiner, Dominika Klimek, Xavier Goux, David Sillam-Dussès, Piotr Gawron, Rashi Halder, Paul Wilmes, Pau Ferrer, Patrick Gerin, Yves Roisin, Philippe Delfosse
Author Information
Magdalena Calusinska: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg. magdalena.calusinska@list.lu. ORCID
Martyna Marynowska: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Marie Bertucci: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Boris Untereiner: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Dominika Klimek: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Xavier Goux: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
David Sillam-Dussès: Laboratory of Experimental and Comparative Ethology EA444, University Paris 13-Sorbonne Paris Cité, 399 Avenue Jean-Baptiste Clément, 93430, Villetaneuse, France.
Piotr Gawron: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
Rashi Halder: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg. ORCID
Paul Wilmes: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
Pau Ferrer: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg. ORCID
Patrick Gerin: Laboratory of Bioengineering, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2/L7.05.19, 1348, Louvain-la-Neuve, Belgium. ORCID
Yves Roisin: Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050, Brussels, Belgium.
Philippe Delfosse: BioSystems and Bioprocessing Engineering, Luxembourg Institute of Science and Technology, Rue du Brill 41, L-4422, Belvaux, Luxembourg.
Miscanthus sp. biomass could satisfy future biorefinery value chains. However, its use is largely untapped due to high recalcitrance. The termite and its gut microbiome are considered the most efficient lignocellulose degrading system in nature. Here, we investigate at holobiont level the dynamic adaptation of Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We use an integrative omics approach combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Modified gene expression profiles of gut bacteria suggest a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to closely related species supports the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.
References
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).
[PMID: 29784790]
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O. & Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass-. Bioenergy 19, 209–227 (2000).
[DOI: 10.1016/S0961-9534(00)00032-5]
Luo, H. et al. Total utilization of Miscanthus biomass, lignin and carbohydrates, using Earth abundant nickel catalyst. ACS Sustain. Chem. Eng. 4, 2316–2322 (2016).
[DOI: 10.1021/acssuschemeng.5b01776]
van der Weijde, T., Dolstra, O., Visser, R. G. F. & Trindade, L. M. Stability of cell wall composition and saccharification efficiency in Miscanthus across diverse environments. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.02004 (2017).
Cantarel, B. L. et al. The Carbohydrate-Active enZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37, D233–D238 (2008).
[PMID: 18838391]
Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168 (2014).
[PMID: 24487819]
Donovan, S. E., Eggleton, P. & Bignell, D. E. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26, 356–366 (2001).
[DOI: 10.1046/j.1365-2311.2001.00342.x]
Tartar, A. et al. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol. Biofuels 2, 25 (2009).
[PMID: 19832970]
Tokuda, G. et al. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc. Natl. Acad. Sci. USA 115, E11996–E12004 (2018).
[PMID: 30504145]
Cuezzo, C., Carrijo, T. F. & Cancello, E. M. Transfer of two species from Nasutitermes Dudley to Cortaritermes Mathews (Isoptera: Termitidae: Nasutitermitinae). Austral. Entomol. 54, 172–179 (2015).
[DOI: 10.1111/aen.12107]
Marynowska, M. et al. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome. BMC Genomics 18, 681–681 (2017).
[PMID: 28863779]
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
[PMID: 21702898]
Heintz-Buschart, A. & Wilmes, P. Human gut microbiome: function matters. Trends Microbiol. 26, 563–574 (2018).
[PMID: 29173869]
He, S. et al. Comparative metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS ONE 8, e61126 (2013).
[PMID: 23593407]
Rossmassler, K. et al. Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome 3, 56–56 (2015).
[PMID: 26607965]
Hu, Y. et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat. Commun. 9, 964 (2018).
[PMID: 29511180]
Coyne, M. J., Zitomersky, N. L., McGuire, A. M., Earl, A. M. & Comstock, L. E. Evidence of extensive DNA transfer between Bacteroidales species within the human gut. mBio 5, e01305–e01314 (2014).
[PMID: 24939888]
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
[PMID: 28894102]
Franco Cairo, J. P. et al. Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite Coptotermes gestroi. Front. Microbiol. 7, 1518 (2016).
[PMID: 27790186]
Cragg, S. M. et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 29, 108–119 (2015).
[PMID: 26583519]
Busk, P. K., Pilgaard, B., Lezyk, M. J., Meyer, A. S. & Lange, L. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function. BMC Bioinform. 18, 214 (2017).
[DOI: 10.1186/s12859-017-1625-9]
Hervé, V. et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ Prepr. 7, e27929v27921 (2019).
Liu, N. et al. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. ISME J. 13, 104–117 (2019).
[PMID: 30116044]
Zhang, M. et al. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc. Natl. Acad. Sci. USA 111, E3708–E3717 (2014).
[PMID: 25136124]
Sheridan, P. O. et al. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb. Genomics 2, e000043 (2016).
[DOI: 10.1099/mgen.0.000043]
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
[DOI: 10.1093/bioinformatics/btv351]
Poulsen, M. et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA 111, 14500–14505 (2014).
[PMID: 25246537]
Terrapon, N. et al. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636 (2014).
[PMID: 24845553]
Kumara, R. P., Saitoh, S., Aoyama, H., Shinzato, N. & Tokuda, G. Metabolic pathways in the mixed segment of the wood-feeding termite Nasutitermes takasagoensis (Blattodea (Isoptera): Termitidae). Appl. Entomol. Zool. 51, 429–440 (2016).
[DOI: 10.1007/s13355-016-0417-4]
Menezes, L. et al. Food storage by the savanna termite Cornitermes cumulans (Syntermitinae): a strategy to improve hemicellulose digestibility? Microb. Ecol. 76, 492–505 (2018).
[PMID: 29270662]
Sabbadin, F. et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 9, 756–756 (2018).
[PMID: 29472725]
Tokuda, G. in Advances in Insect Physiology Vol. 57 (ed. Jurenka, R.) 97−136 (Academic Press, 2019).
Berlemont, R. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Sci. Rep. 7, 222 (2017).
[PMID: 28302998]
Hanafy, R. A., Johnson, B., Elshahed, M. S. & Youssef, N. H. Anaeromyces contortus, sp. nov., a new anaerobic gut fungal species (Neocallimastigomycota) isolated from the feces of cow and goat. Mycologia 110, 502–512 (2018).
[PMID: 29944464]
Busch, A., Danchin, E. G. J. & Pauchet, Y. Functional diversification of horizontally acquired glycoside hydrolase family 45 (GH45) proteins in Phytophaga beetles. BMC Evolut. Biol. 19, 100 (2019).
[DOI: 10.1186/s12862-019-1429-9]
Shelomi, M., Wipfler, B., Zhou, X. & Pauchet, Y. Multifunctional cellulase enzymes are ancestral in Polyneoptera. Insect Mol. Biol. 29, 124–135 (2020).
[PMID: 31449690]
Solden, L. M. et al. Interspecies cross-feeding orchestrates carbon degradation in the rumen ecosystem. Nat. Microbiol. 3, 1274–1284 (2018).
[PMID: 30356154]
Bertucci, M. et al. Carbohydrate hydrolytic potential and redundancy of an anaerobic digestion microbiome exposed to acidosis, as uncovered by metagenomics. Appl. Environ. Microbiol. 85, e00895-00819 (2019).
[DOI: 10.1128/AEM.00895-19]
Raut, M. P., Couto, N., Karunakaran, E., Biggs, C. A. & Wright, P. C. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci. Rep. 9, 16542 (2019).
[PMID: 31719545]
Neugebauer, H. et al. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. Bacteriol. 187, 8300–8311 (2005).
[PMID: 16321934]
Brune, A. in Beneficial Microorganisms in Multicellular Life Forms (eds Rosenberg, E. & Gophna, U.) 3−25 (Springer Berlin Heidelberg, 2011).
Sharma, M. Xylanases: an overview. Br. Biotechnol. J. 3, 1–28 (2013).
[DOI: 10.9734/BBJ/2013/1784]
Walia, A., Guleria, S., Mehta, P., Chauhan, A. & Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7, 11 (2017).
[PMID: 28391477]
da Costa, R. M. F. et al. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. N. Phytol. 213, 1710–1725 (2017).
[DOI: 10.1111/nph.14306]
Fazary, A. E. & Ju, Y.-H. Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim. Biophys. Sin. 39, 811–828 (2007).
[PMID: 17989872]
Dilokpimol, A. et al. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnol. Biofuels 9, 231 (2016).
[PMID: 27795736]
Godin, B. et al. Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Ind. Crops Products 48, 1–12 (2013).
[DOI: 10.1016/j.indcrop.2013.04.007]
Miura, T., Roisin, Y. & Matsumoto, T. Molecular phylogeny and biogeography of the nasute termite genus Nasutitermes (Isoptera: Termitidae) in the Pacific Tropics. Mol. Phylogenet. Evolut. 17, 1–10 (2000).
[DOI: 10.1006/mpev.2000.0790]
Calusinska, M. et al. A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnol. Biofuels 11, 196 (2018).
[PMID: 30038663]
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
[DOI: 10.1093/nar/gks808]
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
[DOI: 10.1093/bioinformatics/btq461]
Yilmaz, P. et al. The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).
[PMID: 24293649]
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
[PMID: 19801464]
Team, R. C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).
[>PMCID: ]
Lin, H.-H. & Liao, Y.-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci. Rep. 6, 24175 (2016).
[PMID: 27067514]
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).
[PMID: 30219103]
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
[PMID: 25977477]
Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304–2304 (2013).
[PMID: 23942190]
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
[PMID: 30504855]
Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2017).
[>PMCID: ]
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
[PMID: 23071270]
Yin, Y. et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451 (2012).
[PMID: 22645317]
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
[DOI: 10.1093/nar/gkt1178]
Savojardo, C., Martelli, P. L., Fariselli, P., Profiti, G. & Casadio, R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 46, W459–w466 (2018).
[PMID: 29718411]
Juncker, A. S. et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci. 12, 1652–1662 (2003).
[PMID: 12876315]
Somogyi, M. A new reagent for the determination of sugars. Int. J. Biol. Chem. 160, 61–68 (1945).
[DOI: 10.1016/S0021-9258(18)43097-9]
Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 152, 375–380 (1944).
[DOI: 10.1016/S0021-9258(18)71980-7]