Cross frequency coupling in next generation inhibitory neural mass models.

Andrea Ceni, Simona Olmi, Alessandro Torcini, David Angulo-Garcia
Author Information
  1. Andrea Ceni: Department of Computer Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom.
  2. Simona Olmi: Inria Sophia Antipolis Méditerranée Research Centre, 2004 Route des Lucioles, 06902 Valbonne, France. ORCID
  3. Alessandro Torcini: Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, CNRS, UMR 8089, 95302 Cergy-Pontoise cedex, France. ORCID
  4. David Angulo-Garcia: Grupo de Modelado Computacional-Dinámica y Complejidad de Sistemas, Instituto de Matemáticas Aplicadas, Universidad de Cartagena, Carrera 6 #36-100, 130001 Cartagena de Indias, Colombia. ORCID

Abstract

Coupling among neural rhythms is one of the most important mechanisms at the basis of cognitive processes in the brain. In this study, we consider a neural mass model, rigorously obtained from the microscopic dynamics of an inhibitory spiking network with exponential synapses, able to autonomously generate collective oscillations (COs). These oscillations emerge via a super-critical Hopf bifurcation, and their frequencies are controlled by the synaptic time scale, the synaptic coupling, and the excitability of the neural population. Furthermore, we show that two inhibitory populations in a master-slave configuration with different synaptic time scales can display various collective dynamical regimes: damped oscillations toward a stable focus, periodic and quasi-periodic oscillations, and chaos. Finally, when bidirectionally coupled, the two inhibitory populations can exhibit different types of θ-γ cross-frequency couplings (CFCs): phase-phase and phase-amplitude CFC. The coupling between θ and γ COs is enhanced in the presence of an external θ forcing, reminiscent of the type of modulation induced in hippocampal and cortex circuits via optogenetic drive.

MeSH Term

Cerebral Cortex
Cognition
Hippocampus
Models, Neurological
Neural Inhibition
Neurons
Synaptic Transmission

Word Cloud

Created with Highcharts 10.0.0neuralinhibitoryoscillationssynapticcouplingmasscollectiveCOsviatimetwopopulationsdifferentcanθCouplingamongrhythmsoneimportantmechanismsbasiscognitiveprocessesbrainstudyconsidermodelrigorouslyobtainedmicroscopicdynamicsspikingnetworkexponentialsynapsesableautonomouslygenerateemergesuper-criticalHopfbifurcationfrequenciescontrolledscaleexcitabilitypopulationFurthermoreshowmaster-slaveconfigurationscalesdisplayvariousdynamicalregimes:dampedtowardstablefocusperiodicquasi-periodicchaosFinallybidirectionallycoupledexhibittypesθ-γcross-frequencycouplingsCFCs:phase-phasephase-amplitudeCFCγenhancedpresenceexternalforcingreminiscenttypemodulationinducedhippocampalcortexcircuitsoptogeneticdriveCrossfrequencynextgenerationmodels

Similar Articles

Cited By