A QSP model of prostate cancer immunotherapy to identify effective combination therapies.

Roberta Coletti, Lorena Leonardelli, Silvia Parolo, Luca Marchetti
Author Information
  1. Roberta Coletti: University of Trento, Department of mathematics, Trento, 38123, Italy.
  2. Lorena Leonardelli: Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, 38068, Italy.
  3. Silvia Parolo: Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, 38068, Italy. ORCID
  4. Luca Marchetti: Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, 38068, Italy. marchetti@cosbi.eu. ORCID

Abstract

Immunotherapy, by enhancing the endogenous anti-tumor immune responses, is showing promising results for the treatment of numerous cancers refractory to conventional therapies. However, its effectiveness for advanced castration-resistant prostate cancer remains unsatisfactory and new therapeutic strategies need to be developed. To this end, systems pharmacology modeling provides a quantitative framework to test in silico the efficacy of new treatments and combination therapies. In this paper we present a new Quantitative Systems Pharmacology (QSP) model of prostate cancer immunotherapy, calibrated using data from pre-clinical experiments in prostate cancer mouse models. We developed the model by using Ordinary Differential Equations (ODEs) describing the tumor, key components of the immune system, and seven treatments. Numerous combination therapies were evaluated considering both the degree of tumor inhibition and the predicted synergistic effects, integrated into a decision tree. Our simulations predicted cancer vaccine combined with immune checkpoint blockade as the most effective dual-drug combination immunotherapy for subjects treated with androgen-deprivation therapy that developed resistance. Overall, the model presented here serves as a computational framework to support drug development, by generating hypotheses that can be tested experimentally in pre-clinical models.

References

  1. Nature. 2014 Nov 6;515(7525):134-7 [PMID: 25156255]
  2. Sci Rep. 2016 Nov 08;6:36029 [PMID: 27824066]
  3. Front Immunol. 2018 Mar 02;9:398 [PMID: 29552012]
  4. Nature. 2017 Mar 30;543(7647):728-732 [PMID: 28321130]
  5. Oncol Rev. 2016 Apr 15;10(1):293 [PMID: 27471580]
  6. J Theor Biol. 2018 Jun 7;446:149-159 [PMID: 29548736]
  7. Nature. 2018 Jul;559(7714):363-369 [PMID: 29950727]
  8. J Androl. 2012 Mar-Apr;33(2):133-44 [PMID: 21680808]
  9. Cancer Res. 2016 Apr 15;76(8):2153-65 [PMID: 27197252]
  10. JCO Clin Cancer Inform. 2019 Feb;3:1-13 [PMID: 30715927]
  11. Math Biosci. 2017 Oct;292:1-9 [PMID: 28713023]
  12. Clin Cancer Res. 2007 Mar 15;13(6):1810-5 [PMID: 17363537]
  13. PLoS One. 2018 Feb 8;13(2):e0190627 [PMID: 29420588]
  14. Clin Cancer Res. 2007 Dec 1;13(23):6947-58 [PMID: 18056169]
  15. J Immunother. 2005 Mar-Apr;28(2):120-8 [PMID: 15725955]
  16. CPT Pharmacometrics Syst Pharmacol. 2019 Nov;8(11):777-791 [PMID: 31535440]
  17. Cancer Discov. 2016 Jan;6(1):80-95 [PMID: 26701088]
  18. J Theor Biol. 2010 May 21;264(2):517-27 [PMID: 20176032]
  19. CPT Pharmacometrics Syst Pharmacol. 2013 Sep 11;2:e74 [PMID: 24026253]
  20. J Immunother Cancer. 2018 Jun 15;6(1):56 [PMID: 29907163]
  21. Sci Rep. 2016 Feb 12;6:21599 [PMID: 26868634]
  22. Nat Rev Cancer. 2015 Dec;15(12):701-11 [PMID: 26563462]
  23. Int Immunol. 2009 Oct;21(10):1105-11 [PMID: 19737784]
  24. Brief Bioinform. 2020 Mar 23;21(2):527-540 [PMID: 30753281]
  25. Nat Rev Immunol. 2009 Mar;9(3):162-74 [PMID: 19197294]
  26. Sci Rep. 2019 Mar 13;9(1):4322 [PMID: 30867454]
  27. Cancer Res. 2018 May 1;78(9):2419-2431 [PMID: 29686021]
  28. Clin Dev Immunol. 2012;2012:421702 [PMID: 22899948]
  29. Cancer Inform. 2018 Sep 12;17:1176935118799754 [PMID: 30224860]
  30. Cancer Res. 2012 Apr 15;72(8):1975-85 [PMID: 22374980]
  31. CA Cancer J Clin. 2019 Jan;69(1):7-34 [PMID: 30620402]
  32. Clin Immunol. 2004 Sep;112(3):258-67 [PMID: 15308119]
  33. Curr Opin Urol. 2017 Nov;27(6):566-571 [PMID: 28825923]
  34. J Natl Cancer Inst. 2006 May 17;98(10):715-7 [PMID: 16705126]
  35. Cold Spring Harb Perspect Med. 2018 Jun 1;8(6): [PMID: 29101113]
  36. Front Immunol. 2019 Mar 28;10:603 [PMID: 30984182]
  37. BMC Med. 2016 May 05;14:73 [PMID: 27151159]
  38. CA Cancer J Clin. 2019 Sep;69(5):363-385 [PMID: 31184787]
  39. J Urol. 2004 Sep;172(3):910-4 [PMID: 15310996]
  40. PLoS One. 2017 May 25;12(5):e0178479 [PMID: 28542574]
  41. Exp Biol Med (Maywood). 2016 Nov;241(17):1900-1910 [PMID: 27444149]
  42. Am J Mens Health. 2018 Nov;12(6):1807-1823 [PMID: 30203706]
  43. J Theor Biol. 2012 Feb 7;294:56-73 [PMID: 22051568]
  44. Front Immunol. 2015 Jun 03;6:264 [PMID: 26089820]
  45. N Engl J Med. 2016 Oct 13;375(15):1415-1424 [PMID: 27626136]
  46. PLoS One. 2010 Dec 08;5(12):e15482 [PMID: 21151630]
  47. Clin Cancer Res. 2017 Nov 15;23(22):6764-6770 [PMID: 28663235]
  48. J Urol. 2002 Feb;167(2 Pt 1):528-34 [PMID: 11792912]
  49. Blood. 1999 Jan 15;93(2):728-36 [PMID: 9885236]
  50. Cancer Lett. 2017 Jul 10;398:62-69 [PMID: 28373004]
  51. J Innate Immun. 2011;3(4):355-64 [PMID: 21502747]
  52. Immunotargets Ther. 2017 Mar 20;6:11-16 [PMID: 28361045]
  53. Urol Oncol. 2017 Dec;35(12):694-700 [PMID: 29146441]
  54. Cancers (Basel). 2019 Jan 08;11(1): [PMID: 30626155]
  55. Cancer Epidemiol. 2019 Oct;62:101578 [PMID: 31377571]
  56. Nature. 2011 Dec 21;480(7378):480-9 [PMID: 22193102]
  57. Cancer Res. 2013 Aug 1;73(15):4599-605 [PMID: 23887973]
  58. Endocrinology. 2013 May;154(5):1768-79 [PMID: 23515290]
  59. Bull Math Biol. 2011 Jan;73(1):2-32 [PMID: 20225137]
  60. Drug Discov Today Technol. 2016 Sep - Dec;21-22:57-65 [PMID: 27978989]
  61. Immunity. 2013 Jul 25;39(1):1-10 [PMID: 23890059]
  62. Expert Rev Anticancer Ther. 2018 Dec;18(12):1271-1286 [PMID: 30252552]
  63. Mol Ther. 2017 Aug 2;25(8):1769-1781 [PMID: 28668320]
  64. IET Syst Biol. 2011 Nov;5(6):336-6 [PMID: 22129029]
  65. J Cell Physiol. 2019 Nov;234(11):19352-19365 [PMID: 30993712]
  66. Nat Rev Cancer. 2012 Mar 22;12(4):252-64 [PMID: 22437870]
  67. Cancer Res. 2009 Sep 1;69(17):7111-20 [PMID: 19706777]
  68. Mol Cell Biol. 2014 Jun;34(11):2017-28 [PMID: 24662052]
  69. Cold Spring Harb Perspect Med. 2019 May 1;9(5): [PMID: 30201787]
  70. Wiley Interdiscip Rev Syst Biol Med. 2019 Nov;11(6):e1459 [PMID: 31260191]
  71. Cancer Res. 2010 May 1;70(9):3473-82 [PMID: 20406970]
  72. Science. 2018 Mar 23;359(6382):1350-1355 [PMID: 29567705]
  73. Sci Rep. 2017 Apr 11;7(1):797 [PMID: 28400561]
  74. Pharmacol Ther. 2019 Feb;194:84-106 [PMID: 30268773]
  75. Clin Cancer Res. 2012 Dec 15;18(24):6580-7 [PMID: 23087408]
  76. CPT Pharmacometrics Syst Pharmacol. 2017 Sep;6(9):576-588 [PMID: 28653357]
  77. Crit Rev Oncog. 1993;4(5):473-92 [PMID: 8241321]
  78. CPT Pharmacometrics Syst Pharmacol. 2016 Feb;5(2):43-53 [PMID: 26933515]
  79. Int Immunopharmacol. 2018 Oct;63:282-291 [PMID: 30121453]
  80. J Theor Biol. 2018 Apr 7;442:1-10 [PMID: 29337259]
  81. Immunol Rev. 2008 Apr;222:162-79 [PMID: 18364001]
  82. EBioMedicine. 2019 Jan;39:1-2 [PMID: 30685121]
  83. Nat Rev Cancer. 2001 Oct;1(1):34-45 [PMID: 11900250]
  84. Bioinformatics. 2011 Sep 15;27(18):2610-1 [PMID: 21784792]
  85. Trends Pharmacol Sci. 2019 Jan;40(1):4-7 [PMID: 30527590]

MeSH Term

Animals
Cancer Vaccines
Cell Line, Tumor
Combined Modality Therapy
Humans
Immunologic Factors
Immunotherapy
Male
Mice
Models, Biological
Prostate
Prostatic Neoplasms, Castration-Resistant

Chemicals

Cancer Vaccines
Immunologic Factors

Word Cloud

Created with Highcharts 10.0.0cancertherapiesprostatecombinationmodelimmunenewdevelopedimmunotherapyframeworktreatmentsQSPusingpre-clinicalmodelstumorpredictedeffectiveImmunotherapyenhancingendogenousanti-tumorresponsesshowingpromisingresultstreatmentnumerouscancersrefractoryconventionalHowevereffectivenessadvancedcastration-resistantremainsunsatisfactorytherapeuticstrategiesneedendsystemspharmacologymodelingprovidesquantitativetestsilicoefficacypaperpresentQuantitativeSystemsPharmacologycalibrateddataexperimentsmouseOrdinaryDifferentialEquationsODEsdescribingkeycomponentssystemsevenNumerousevaluatedconsideringdegreeinhibitionsynergisticeffectsintegrateddecisiontreesimulationsvaccinecombinedcheckpointblockadedual-drugsubjectstreatedandrogen-deprivationtherapyresistanceOverallpresentedservescomputationalsupportdrugdevelopmentgeneratinghypothesescantestedexperimentallyidentify

Similar Articles

Cited By