Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles.

Daning Wang, Xinlin Liu, Minxi Wei, Ciying Qian, Shuo Song, Jie Chen, Zhiping Wang, Qin Xu, Yurou Yang, Maozhou He, Xin Chi, Shiwen Huang, Tingting Li, Zhibo Kong, Qingbing Zheng, Hai Yu, Yingbin Wang, Qinjian Zhao, Jun Zhang, Ningshao Xia, Ying Gu, Shaowei Li
Author Information
  1. Daning Wang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  2. Xinlin Liu: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  3. Minxi Wei: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  4. Ciying Qian: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  5. Shuo Song: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. ORCID
  6. Jie Chen: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  7. Zhiping Wang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  8. Qin Xu: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  9. Yurou Yang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  10. Maozhou He: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. ORCID
  11. Xin Chi: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  12. Shiwen Huang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  13. Tingting Li: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  14. Zhibo Kong: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  15. Qingbing Zheng: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  16. Hai Yu: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  17. Yingbin Wang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  18. Qinjian Zhao: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  19. Jun Zhang: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China.
  20. Ningshao Xia: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. nsxia@xmu.edu.cn. ORCID
  21. Ying Gu: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. guying@xmu.edu.cn. ORCID
  22. Shaowei Li: State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, China. shaowei@xmu.edu.cn. ORCID

Abstract

The capsid of human papillomavirus (HPV) spontaneously arranges into a T = 7 icosahedral particle with 72 L1 pentameric capsomeres associating via disulfide bonds between Cys175 and Cys428. Here, we design a capsomere-hybrid virus-like particle (chVLP) to accommodate multiple types of L1 pentamers by the reciprocal assembly of single C175A and C428A L1 mutants, either of which alone encumbers L1 pentamer particle self-assembly. We show that co-assembly between any pair of C175A and C428A mutants across at least nine HPV genotypes occurs at a preferred equal molar stoichiometry, irrespective of the type or number of L1 sequences. A nine-valent chVLP vaccine-formed through the structural clustering of HPV epitopes-confers neutralization titers that are comparable with that of Gardasil 9 and elicits minor cross-neutralizing antibodies against some heterologous HPV types. These findings may pave the way for a new vaccine design that targets multiple pathogenic variants or cancer cells bearing diverse neoantigens.

References

  1. Roden, R. B. S. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 18, 240–254 (2018). [PMID: 29497146]
  2. Hagensee, M. E., Olson, N. H., Baker, T. S. & Galloway, D. A. Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J. Virol. 68, 4503–4505 (1994). [PMID: 8207824]
  3. Bishop, B. et al. Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem. 282, 31803–31811 (2007). [PMID: 17804402]
  4. Li, Z. et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus. mBio 8, e00787–17 (2017). [PMID: 28951471]
  5. Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G. & Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell 5, 557–567 (2000). [PMID: 10882140]
  6. Li, Z. et al. The C-terminal arm of the human papillomavirus major capsid protein is immunogenic and involved in virus-host interaction. Structure 24, 874–885 (2016). [PMID: 27276427]
  7. Trus, B. L. et al. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 A resolution. Nat. Struct. Biol. 4, 413–420 (1997). [PMID: 9145113]
  8. Lee, H. et al. A cryo-electron microscopy study identifies the complete H16.V5 epitope and reveals global conformational changes initiated by binding of the neutralizing antibody fragment. J. Virol. 89, 1428–1438 (2015). [PMID: 25392224]
  9. Guan, J. et al. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Virology 483, 253–263 (2015). [PMID: 25996608]
  10. Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943 (2007). [PMID: 17494926]
  11. Vesikari, T. et al. A randomized, double-blind, phase III study of the immunogenicity and safety of a 9-valent human papillomavirus L1 virus-like particle Vaccine (V503) versus Gardasil(R) in 9-15-year-old girls. Pediatr. Infect. Dis. J. 34, 992–998 (2015). [PMID: 26090572]
  12. Paavonen, J. et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369, 2161–2170 (2007). [PMID: 17602732]
  13. Qiao, Y. L. et al. Efficacy, safety, and immunogenicity of an Escherichia coli-produced bivalent human papillomavirus vaccine: an interim analysis of a randomized clinical trial. J. Natl Cancer Inst. 112, 145–153 (2019). [>PMCID: ]
  14. Hu, Y. et al. Immunogenicity noninferiority study of 2 doses and 3 doses of an Escherichia coli-produced HPV bivalent vaccine in girls vs. 3 doses in young women. Sci. China Life Sci. 63, 582–591 (2019). [PMID: 31231780]
  15. Lopalco, P. L. Spotlight on the 9-valent HPV vaccine. Drug Des. Dev. Ther. 11, 35–44 (2017). [DOI: 10.2147/DDDT.S91018]
  16. Draper, E. et al. A randomized, observer-blinded immunogenicity trial of Cervarix((R)) and Gardasil((R)) Human Papillomavirus vaccines in 12-15 year old girls. PLoS ONE 8, e61825 (2013). [PMID: 23650505]
  17. Ault, K. A. Human papillomavirus vaccines and the potential for cross-protection between related HPV types. Gynecol. Oncol. 107, S31–S33 (2007). [PMID: 18499916]
  18. Christensen, N. D. & Bounds, C. E. Cross-protective responses to human papillomavirus infection. Future Virol. 5, 163–174 (2010). [DOI: 10.2217/fvl.10.1]
  19. Boxus, M. et al. Broad cross-protection is induced in preclinical models by a Human Papillomavirus Vaccine composed of L1/L2 chimeric virus-like particles. J. Virol. 90, 6314–6325 (2016). [PMID: 27147749]
  20. Schellenbacher, C. et al. Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses. J. Invest. Dermatol. 133, 2706–2713 (2013). [PMID: 23752042]
  21. Wang, D. et al. Identification of broad-genotype HPV L2 neutralization site for pan-HPV vaccine development by a cross-neutralizing antibody. PLoS ONE 10, e0123944 (2015). [PMID: 25905781]
  22. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017). [PMID: 28678778]
  23. Christensen, N. D. et al. Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types. Virology 291, 324–334 (2001). [PMID: 11878901]
  24. Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl Acad. Sci. USA 107, 6298–6303 (2010). [PMID: 20308582]
  25. Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol. 82, 5190–5197 (2008). [PMID: 18367526]
  26. Li, M., Beard, P., Estes, P. A., Lyon, M. K. & Garcea, R. L. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J. Virol. 72, 2160–2167 (1998). [PMID: 9499072]
  27. Varsani, A., Williamson, A. L., Jaffer, M. A. & Rybicki, E. P. A deletion and point mutation study of the human papillomavirus type 16 major capsid gene. Virus Res. 122, 154–163 (2006). [PMID: 16938363]
  28. Ishii, Y., Tanaka, K. & Kanda, T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology 308, 128–136 (2003). [PMID: 12706096]
  29. Sapp, M., Fligge, C., Petzak, I., Harris, J. R. & Streeck, R. E. Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J. Virol. 72, 6186–6189 (1998). [PMID: 9621087]
  30. Wei, M. et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg. Microbes Infect. 7, 160 (2018). [PMID: 30254257]
  31. Csorba, R., Kiss, E. F. & Molnar, L. Reactions of some cucurbitaceous species Tozucchini yellow mosaic virus (ZYMV). Commun. Agric. Appl. Biol. Sci. 69, 499–506 (2004). [PMID: 15756830]
  32. Tadpitchayangkoon, P., Park, J. W., Mayer, S. G. & Yongsawatdigul, J. Structural changes and dynamic rheological properties of sarcoplasmic proteins subjected to pH-shift method. J. Agric. Food Chem. 58, 4241–4249 (2010). [PMID: 20232914]
  33. Gu, Y. et al. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine 35, 4637–4645 (2017). [PMID: 28736197]
  34. Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol. Med. 119, 445–462 (2005). [PMID: 16350417]
  35. Ishii, Y., Ozaki, S., Tanaka, K. & Kanda, T. Human papillomavirus 16 minor capsid protein L2 helps capsomeres assemble independently of intercapsomeric disulfide bonding. Virus Genes 31, 321–328 (2005). [PMID: 16175337]
  36. Wang, D. et al. Stop codon mutagenesis for homogenous expression of human papillomavirus L1 protein in Escherichia coli. Protein Expr. Purif. 133, 110–120 (2017). [PMID: 28267627]
  37. Pan, H. et al. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: characterization, antigenicity and immunogenicity. Vaccine 35, 3222–3231 (2017). [PMID: 28483196]
  38. Ahmed, A. I., Bissett, S. L. & Beddows, S. Amino acid sequence diversity of the major human papillomavirus capsid protein: implications for current and next generation vaccines. Infect. Genet. Evol. 18, 151–159 (2013). [PMID: 23722024]
  39. Van Doorslaer, K. Evolution of the papillomaviridae. Virology 445, 11–20 (2013). [PMID: 23769415]
  40. Guan, J. et al. The U4 antibody epitope on Human Papillomavirus 16 identified by cryo-electron microscopy. J. Virol. 89, 12108–12117 (2015). [PMID: 26401038]
  41. Wang, Z., Christensen, N., Schiller, J. T. & Dillner, J. A monoclonal antibody against intact human papillomavirus type 16 capsids blocks the serological reactivity of most human sera. J. Gen. Virol. 78, 2209–2215 (1997). [PMID: 9292008]
  42. Salunke, D. M., Caspar, D. L. & Garcea, R. L. Polymorphism in the assembly of polyomavirus capsid protein VP1. Biophys. J. 56, 887–VP900 (1989). [PMID: 2557933]
  43. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). [PMID: 17681537]
  44. Rupp. B. Biomolecular Crystallography: Principles, Practice, And Application To Structural Biology. 1st edn. (Garland Science, 2010).
  45. Ionescu, R. M. et al. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J. Pharm. Sci. 95, 70–79 (2006). [PMID: 16315228]
  46. Zhang, X. et al. Lessons learned from successful human vaccines: delineating key epitopes by dissecting the capsid proteins. Hum. Vaccin. Immunotherapeutics 11, 1277–1292 (2015). [DOI: 10.1080/21645515.2015.1016675]
  47. Zhang, X. et al. Functional assessment and structural basis of antibody binding to human papillomavirus capsid. Rev. Med. Virol. 26, 115–128 (2015). [PMID: 26676802]
  48. Li, Z. et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of Human Papillomavirus. mBio 8, 17 (2017).
  49. Zhang, T. et al. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types. Vaccine 28, 3479–3487 (2010). [PMID: 20211219]
  50. Didierlaurent, A. M. et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183, 6186–6197 (2009). [PMID: 19864596]
  51. Li, Z. et al. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat. Commun. 9, 5360 (2018). [PMID: 30560935]
  52. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017). [PMID: 28678784]
  53. Luo, W. X. et al. [Construction and application of an Escherichia coli high effective expression vector with an enhancer]. Sheng Wu Gong Cheng Xue Bao = Chin. J. Biotechnol. 16, 578–581 (2000).
  54. Christensen, N. D., Kreider, J. W., Cladel, N. M., Patrick, S. D. & Welsh, P. A. Monoclonal antibody-mediated neutralization of infectious human papillomavirus type 11. J. Virol. 64, 5678–5681 (1990). [PMID: 2170694]
  55. Zam, Z. S., Jones, P. & Das, N. D. Production of hybridomas secreting antibodies to the cornea. Curr. Eye Res. 1, 139–144 (1981). [PMID: 7297101]
  56. Laemmli, U. K., Beguin, F. & Gujer-Kellenberger, G. A factor preventing the major head protein of bacteriophage T4 from random aggregation. J. Mol. Biol. 47, 69–85 (1970). [PMID: 5413343]
  57. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000). [PMID: 10692345]
  58. Zhang, X. et al. Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin((R). Vaccine 32, 4039–4050 (2014). [PMID: 24892250]
  59. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). [PMID: 5494038]
  60. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). [PMID: 4711343]
  61. Yan, X., Sinkovits, R. S. & Baker, T. S. AUTO3DEM–an automated and high throughput program for image reconstruction of icosahedral particles. J. Struct. Biol. 157, 73–82 (2007). [PMID: 17029842]
  62. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). [PMID: 16859925]
  63. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). [PMID: 3690530]
  64. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). [PMID: 15264254]
  65. Kondo, K. et al. Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358, 266–272 (2007). [PMID: 17010405]
  66. Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Efficient intracellular assembly of papillomaviral vectors. J. Virol. 78, 751–757 (2004). [PMID: 14694107]
  67. Pastrana, D. V. et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205–216 (2004). [PMID: 15051381]
  68. Chen, Y. et al. Antigenic analysis of divergent genotypes human Enterovirus 71 viruses by a panel of neutralizing monoclonal antibodies: current genotyping of EV71 does not reflect their antigenicity. Vaccine 31, 425–430 (2013). [PMID: 23088887]

MeSH Term

Animals
Antibodies, Neutralizing
Antibodies, Viral
Capsid Proteins
Drug Design
Epitopes
Female
Humans
Immunogenicity, Vaccine
Mice
Models, Animal
Mutation
Neoplasms
Neutralization Tests
Papillomaviridae
Papillomavirus Infections
Papillomavirus Vaccines
Protein Multimerization
Vaccines, Virus-Like Particle

Chemicals

Antibodies, Neutralizing
Antibodies, Viral
Capsid Proteins
Epitopes
Papillomavirus Vaccines
Vaccines, Virus-Like Particle

Word Cloud

Created with Highcharts 10.0.0L1HPVparticledesignhumanpapillomaviruscapsomere-hybridvirus-likechVLPmultipletypesC175AC428Amutantsco-assemblyvaccinecapsidspontaneouslyarrangesT = 7icosahedral72pentamericcapsomeresassociatingviadisulfidebondsCys175Cys428accommodatepentamersreciprocalassemblysingleeitheraloneencumberspentamerself-assemblyshowpairacrossleastninegenotypesoccurspreferredequalmolarstoichiometryirrespectivetypenumbersequencesnine-valentvaccine-formedstructuralclusteringepitopes-confersneutralizationtiterscomparableGardasil9elicitsminorcross-neutralizingantibodiesheterologousfindingsmaypavewaynewtargetspathogenicvariantscancercellsbearingdiverseneoantigensRationalmulti-valentparticles

Similar Articles

Cited By (11)